2.5 Basic Calculus Rules
Proposition: Let f: R™ — R be a convex function. Let F be defined by
F(z) = f(Ax)

where A € R™*™, Then
ATOf(Az) C OF (x)

Proof. Suppose ATg € AT0f(Ax), where g € Of(Ax). Then
F(y) — F(x) — (ATg,y — z) = f(Ay) — f(Az) — (9, Ay — Az) >0
O

Theorem:(Moreau-Rockafellar) Let f,g: R™ — (—o0, 00| be proper convex
functions. Then for every zo € R"

9f(x0) + 9g(x0) C A(f + g)(0)

Moreover, suppose int dom(f) Ndom(g) # @. Then for every zo € R™,

Of (w0) + dg(xo) = O(f + g)(x0)

Proof. Let uy € 0f(xg), uz € dg(xg). Then for every z € R™,

f(x) > f(z0) + (w1, 2 — x0), 9(x) > g(x0) + (U2, — x0)

Hence, adding the two inequalities shows that u +v € d(f + ¢)(xo)-
Now, let v € I(f + g)(xo). Note that f(zg) # oo, otherwise this implies that
f + g = oco. Similarly, g(xg) # oo. Next, consider the following two sets

Ay ={(z —20,y): y> (@) — f(z0) — (v,z — 20)}
Ay = {(x—x0,y): —y > g(x) — g(0)}.
Ag, Ay are both nonempty and convex (consider epi(f), epi(g)). Also, since
v € I(f+g)(z0), Ay N Ay = 0 (otherwise, adding the above two inequalities
contradict the fact that v € 9(f + g))

Then Ay, Ay can be separated by a hyperplane. So there exists (a, b) # 0, ¢ such
that

(a2 — o) + by < ¢, V(z,y) such that y > f(z) — f(w0) — (v, 2 — o)

(a,x — x9) + by > ¢, V(x,y) such that —y > g(x) — g(xo)

Since (0,0) € Ay, ¢ < 0. Since (0,1) € Ay, b <0.
For all € > 0,(0,¢) € Ay, since b < 0, letting € — 0, we get ¢ > 0. Hence ¢ = 0.
Suppose b = 0, we have

(a,x — x9) <0, V(z,y) such that y > f(z) — f(xo) — (v, — zg)



(a,z — x0) >0, V(z,y) such that —y > g(z) — g(zo)

which are equivalent to
(a,z — xo) <0, Vo € dom(f)

(a,x — xg) > 0, Ya € dom(g)

Let T € int dom(f)Ndom(g). Then (a,Z—xz) = 0. Since T € int dom(f), there
exists § > 0 such that B(Z,d) C dom(f). Then
da

)
(a,?> = (a,fﬁ—?a—xo) <0

So a = 0. This contradicts the fact that (a,b) # 0. Hence b < 0.
Let —uz = %, we have
<_u27x - $0> <y, V(l‘,y) such that y > f($) - f(xo) - <’U7x - $0>~

(—ug,x — xg) > y,V(z,y) such that —y > g(x) — g(xo)
Consider y = g(zg) — g(x), then uy € dg(zp).
By considering (z, f(z) — f(x0) — (v,& — xo) + € and letting e — 0, we have
up = v —ug € 0f(xo).
Hence v = uy + ug € 9f (o) + 0g(xo).
Therefore O(f + g)(x0) C 0f(x0) + dg(zo). O

2.5.1 Directional Derivative

Definition:(Directional Derivative) Let f : R — R be a function with
x € domf. The directional derivative of f at & with direction d is given by

Flosd) — tin 21D = @)

t—0+ t

Lemma: Let f : R* — R be a convex function with = € domf. Then for all
direction d € R™ and A1, A2 € R with Ao > A1 > 0, we have

flz+Md) = f(z) _ f(z+ Aad) — f(2)

<

/\1 )\2
Proof. Note that  + A\d = %(m + Aad) + (1 — i—;)x Then
)\1 >\1
flx+Aid) < —f(x+ Aod) + (1 — ) f(z)
/\2 )\2
The result follows from the above inequality. O

Lemma: Let f : R® — R be a convex function with # € int(domf). Then
f/(x;d) is finite for every direction d € R™.



Proof. Recall that f is locally Lipschitz at z. Then for ¢ small,

}f($+td)—f(x)| < Ltl|d]
t -t

< Lj|d]] < o0
O

Theorem: Let f: R” — R be a convex function with z € int(domf). Then

f'(z;d) = sup (g,d)
g€0f(x)

Proof. By the above proposition, we have f’(z;d) = inf;~g w.
Define 9(d) := f’(x;d). Then 1 is convex and finite for every d.
Therefore, 1 is continuous and hence closed.

Hence, ¢ = ¢** = sup,{(g,d) — ¢¥*(9)}.

We will show that
. 0 gedf(x
¥(g) = { (@)
oo otherwise

Note that 1(0) = 0. Then for all g,
¥*(g9) = (9,0) —¥(0) =0
Suppose g € 8f (x). Then (g, d) — 1p(d) < LEHDZIE@ () for all ¢ > 0. So
(g9,d) —(d) < f(x;d) —(d) = 0 for all d

Therefore, 1*(g) = supy{(g,d) —1(d)} < 0.
Suppose g ¢ 9f(x). Then there exists y such that

(g,y—x) > f(y) — f(x)

Write y = = + dy, then we have (g,do) > f(z + do) — f(z) > f'(z;do).
Note that t1(d) = ¥(td), then

Y*(g) = Sl;p{<g, d) —¢(d)} > igg{@, td) —(td)} = iglg{t(@, d) —(d))} > oo

Cousider **(g) = supy{{(g,d) — ¥*(g9)}.
It follows that ¥**(g) = SUDged f () (9,d).

Hence, fl(x7 d) = 1p(d) = w**(d) = Supgeaf(m) <g7 d> O
Theorem:(Dubovitskii-Milyutin) Let fi,..., f : R" — R be convex func-
tions and let T € Ny, int(domyf;). Let f: R™ — R be given by

f(z) = max fi(2)
and let I(Z) = {i| fi;(z) = f(T)}. Then

of(@) =conv( | 0fi(@).

i€ (T)



Proof. Note that if g € 0f;(T), then g € 0f (%) for all i € I(T).

Also, since §f(T) is convex, then conv( Uierz) 0/ (7)) C Of(T).

So suppose go € Of(T) but go ¢ COHV(UiEI(E) ofi(T)).

Note that conv (|, 1z Ofi ()) is compact (Each df;(Z) is compact).
Then there exists d such that

(g0,d) > max sup (g,d) = max f/(z;d)
1€1(T) gedf; (T) 1€1(T)

We claim that f'(T;d) = max;c(z) fi (Z;d). Then (go,d) > f'(Z;d).

But since gg € 0f (%), then f(T +td) — f(T) > {(go,d) for all ¢ > 0.
Then f/(%;d) > (go,d). This is a contradiction.

Therefore go € conv (| J;, 1@ 0fi (T)).

It remains to prove that f'(Z;d) = max;c;() fi(T;d). First for all ¢ > 0,

FE+1d) — £(7) _ fiE+td) — £i(®)
t - t

Then f/'(Z;d) > f!(%;d). Consider {t;} with t; | 0 and z, = T + t5d.

Then there exists i such that i € I(zy) for infinitely many k.

Without loss of generality, assume i € I(z},) for all k.

Then f;(xr) > fi(xg) for all ¢, k.

Taking limit and since f; are continuous at T, we have

for all ¢ € I(%)

fi(x) > fi(x) for all ¢
Hence

k—o0 tr k—o0 tr

Therefore, f'(T;d) = max;c ) f{(T; d).

= fi(7;d)



