
3.2 Duality

3.2.1 Lagrangian and Dual Function

We consider a standard optimization problem (P):

min f(x)

subject to gi(x) ≤ 0, i = 1, ..., h

hj(x) = 0, j = 1, ..., k

The optimal value p∗ of (P) is called the primal optimal value.
Definition: (Lagrangian) The Lagrangian associated with the above problem
is defined as

L(x, λ, µ) = f(x) +

h∑
i=1

λigi(x) +

k∑
j=1

µjhj(x)

The vectors λ, µ are called the dual variables or Lagrange multipliers.

Definition: (Dual function) The dual function is defined as

q(λ, µ) = inf
x
L(x, λ, µ)

Note that q is always concave, being the pointwise infimum of affine functions.

Let p∗ be the optimal value of (P). The dual function gives a lower bound on p∗.

Proposition: For all λ ≥ 0 and µ, we have

q(λ, µ) ≤ p∗

Proof. Let x be a feasible point. Then gi(x) ≤ 0 and hj(x) = 0. Then

h∑
i=1

λigi(x) +

k∑
j=1

µjhj(x) ≤ 0

Hence for all λ ≥ 0 and µ,

q(λ, µ) ≤ L(x, λ, µ) = f(x) +

h∑
i=1

λigi(x) +

k∑
j=1

µjhj(x) ≤ f(x)

Since this holds for all feasible points, we have q(λ, µ) ≤ p∗.

We next consider the dual problem.
Definition:(Dual Problem) The following optimization problem (D) is called
the dual problem associated to (P):

max q(λ, µ)

subject to λ ≥ 0
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A pair (λ, µ) such that λ ≥ 0 and q(λ, µ) > −∞ is called dual feasible.
A optimal solution (λ∗, µ∗) is called dual optimal.

Example: (Linear Program)
Consider a standard linear program (LP):

min
x∈Rn

〈c, x〉

subject to Ax = b

x ≥ 0

The Lagrangian is given by

L(x, λ, µ) = cTx−
n∑
i=1

λixi + µT (Ax− b) = (ATµ+ c− λ)Tx− bTµ

If c+ATµ−λ 6= 0, then L(x, λ, µ) is unbounded below. Hence the dual function
is given by

q(λ, µ) =

{
−bTµ c+ATµ− λ = 0

−∞ otherwise

Therefore, the dual problem is given by

max − bTµ
subject to ATµ+ c− λ = 0

λ ≥ 0

It can also be written in this form:

max − bTµ
AT + cµ ≥ 0

Example: Duality and Conjugate function
Consider the following optimization problem

min f(x)

subject to Ax ≤ b
Cx = d

The dual function is

q(λ, µ) = inf
x

(f(x) + λT (Ax− b) + µT (Cx− d))

= −bTλ− dTµ+ inf
x

(f(x) + (ATλ+ CTµ)Tx)

Note that

inf
x

(f(x)+(ATλ+CTµ)Tx) = − sup
x

(−(ATλ+CTµ)Tx−f(x)) = −f∗(−(ATλ+CTµ))

Hence, we have

q(λ, µ) = −bTλ− dTµ− f∗(−(ATλ+ CTµ))
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3.2.2 Strong and Weak Duality

Let d∗ be the optimal value of the dual problem. We have the following inequal-
ity.

Proposition:(Weak Duality) Let p∗ be the primal optimal value and d∗ be
the dual optimal value. Then

d∗ ≤ p∗

The difference p∗ − d∗ is called the duality gap.
If p∗ = d∗, then we say that strong duality holds.

This leads us to ask the question when do strong duality holds.
Such conditions are called constraint qualification. We will study one simple
qualification: Slater’s condition.

Consider a convex problem of the form:

min f(x)

subject to gi(x) ≤ 0, i = 1, ..., h

Ax = b

where f, gi are convex.

Slater’s Condition: There exists x ∈ ri(D) such that

gi(x) < 0, i = 1, ..., h, Ax = b

where D = domf ∩ (∩idomgi).

Theorem:(Slater’s Theorem) If the problem is convex and Slater’s condition
is satisfied, then strong duality holds.

3.2.3 Geometric Interpretation

Consider the following set

A := {(u, v, t)| ∃x gi(x) ≤ ui, i = 1, ..., h, hj(x) = vj , j = 1, ..., k, f(x) ≤ t}

We can show that A is convex if the problem is convex.
Note that

p∗ = inf{t| (0, 0, t) ∈ A}

that is the lowest point where A intersects the ’vertical’-axis.
We can also interpret the dual function through this geometric setting:

q(λ, µ) = inf{〈(λ, µ, 1), (u, v, t)〉| (u, v, t) ∈ A}

3



For fixed (λ, µ), we can define a hyperplane

〈(λ, µ, 1), (u, v, t)〉 = q

Then q(λ, µ) is where a supporting hyperplane to A with ’slope’ (λ, µ) intersects
the ’vertical’ axis.
Therefore, strong duality holds if and only if there is a nonvertical supporting
hyperplane to A at (0, 0, p∗).
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Figure 1: Geometric picture of the set G and dual function

Figure 2: Primal and dual optimal value
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Figure 3: Geometric picture of the set A

Example: Consider the problem

min
x,y≥0

e−
√
xy

subject to x = 0

The optimal value p∗ is 1.
The dual function is given by

q(λ) = inf
x,y≥0

{e−
√
xy + λx} =

{
0 λ ≥ 0

−∞ λ < 0

Hence, the dual optimal value d∗ is 0.
Therefore, the strong duality does not hold.
Note that Slater’s Condition is not satisfied for this example.

3.3 KKT conditions

Let’s consider the general convex problem again

min f(x)

subject to gi(x) ≤ 0, i = 1, ..., h

hj(x) = 0, j = 1, ..., k

where are the functions are convex. We also assume that hj are affine.
Note that

sup
λ≥0,µ

L(x, λ, µ) =

{
f(x) gi(x) ≤ 0, hj(x) = 0

∞ otherwise
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Then p∗ = infx supλ≥0,µ L(x, λ, µ)
On the other hand, d∗ = supλ≥0,µ infx L(x, λ, µ).
Therefore, strong duality is equivalent to

sup
λ≥0,µ

inf
x
L(x, λ, µ) = inf

x
sup
λ≥0,µ

L(x, λ, µ)

Suppose strong duality holds. Let x∗ be primal optimal and (λ∗, µ∗) be dual
optimal. Then

f(x∗) = q(λ∗, µ∗)

= inf
x

(f(x) +

h∑
i=1

λ∗i gi(x) +

k∑
j=1

µ∗jhj(x))

≤ f(x∗) +

h∑
i=1

λ∗i gi(x
∗) +

k∑
j=1

µ∗jhj(x
∗)

≤ f(x∗)

Therefore, we have equality for each line. In particular, we have

h∑
i=1

λ∗i gi(x
∗) = 0

Since each term is nonpositive, we have λ∗i gi(x
∗) = 0 for all i.

This is called complementary slackness.
Suppose all the functions are also differentiable. Then since x∗ minimize L(x, λ∗, µ∗),
we have

∇xL(x∗, λ∗, µ∗) = 0

That is

∇f(x∗) +

h∑
i=1

λ∗i∇gi(x∗) +

k∑
j=1

µ∗jhj(x
∗) = 0

Combining with the complementary slackness condition, we have the following
Karush-Kuhn-Tucker(KKT) condition:

∇f(x∗) +

h∑
i=1

λ∗i∇gi(x∗) +

k∑
j=1

µ∗j∇hj(x∗) = 0

gi(x
∗) ≤ 0, i = 1, ..., h

hj(x
∗) = 0, j = 1, ..., k

λ∗i ≥ 0

λ∗i gi(x
∗) = 0, i = 1, ..., h

Conversely, suppose x∗, (λ∗, µ∗) satisfy the KKT conditions.
Since L(x, λ∗, µ∗) is convex in x and ∇xL(x∗, λ∗, µ∗) = 0, then x∗ minimizes
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L(x, λ∗, µ∗). Then

q(λ∗, µ∗) = L(x∗, λ∗, µ∗) = f(x∗) +

h∑
i=1

λ∗i gi(x
∗) +

k∑
j=1

µ∗jhj(x
∗) = f(x∗)

Therefore, there is no duality gap and x∗, (λ∗, µ∗) are primal optimal and dual
optimal respectively.
To conclude, we have the following optimal condition:

Theorem: Consider the convex problem (P). Suppose strong duality holds.
Then x∗, (λ∗, µ∗) are primal and dual optimal if and only if x∗, (λ∗, µ∗) satisfy
the KKT conditions.

Remark: If the functions are not differentiable, we can replace the first KKT
condition by 0 ∈ ∂f(x∗) +

∑h
i=1 λ

∗
i ∂gi(x

∗) +
∑k
j=1 µ

∗
j∂hj(x

∗).

Example Consider the problem

min x2 + y2

subject to x+ y = 1

x, y ≥ 0

The KKT condition can be written as

2x− λ1 + µ = 0

2y − λ2 + µ = 0

x+ y = 1

x, y ≥ 0

λ1, λ2 ≥ 0

λ1x = λ2y = 0

By the first two conditions, we have,

λ1 = 2x+ µ, λ2 = 2y + µ.

By the complementary slackness conditions, we have

2x2 + µx = 0, 2y2 + µy = 0.

Then x = 0 or −µ/2, and y = 0 or −µ/2.
We cannot have x, y both equal to 0 since otherwise x+ y = 0 6= 1.
Suppose exactly one of x, y is zero, say x.
Then y = −µ/2. Since x + y = 1, then µ = −2. But since x = 0, this implies
that λ1 = µ = −2 < 0. This violates the dual feasibility.
Therefore, we must have x, y both nonzero. That is x = y = −µ/2.
Since x+ y = 1, we have µ = −1. So x = y = 1/2 and λ1 = λ2 = 0 satisfy the
KKT conditions. Therefore the global minimum is obtained at (1/2, 1/2).
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