1 Convex Sets and Functions

1.1 Convex Sets
Definition:(Convex sets) A subset C' of R™ is called conver if

A+ (1-=NyeC, ¥Vaz,yeC, VAe0,1].

Geometrically, it just means that the line segment joining any two points in a
convex set C' lies in C.
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Figure 1: Convex and non-convex set

Definition:(Convex combination) Given 1, ..., x,, € R™, an element in the
form z = 31" | Ay, where >0 A; = 1 and \; > 0 is called a convex combina-
tion of a1, ..., Tm.

Proposition: A subset C of R™ is convex if and only if contains all convex
combination of its element.

Proof. Suppose C' is convex. We will show by induction that it contains all
convex combination Y ;- A;z; of its elements.

The case m = 1,2 is trivial, so suppose all convex combination of k elements
lies in C', where k£ < m. Consider

m+1 m+1
T = Z A\ix;, where Z N=1
i=1 i=1
If Ajpg1 =1, then Ay = - = A, = 0. Then z € C. So assume \,,,+1 < 1, then
i)\izl—/\mﬂ and z’":xi =1
N ; 1-— )\m 1
=1 =1 +

Then y = Y1) s=—u; € C. Hence

i
m+

T = (1 — /\m+1)y + Amt+1Tm41 € C



The other direction is trivial. O

Proposition: Let C; be a convex set of R™ and let Cy be a convex set pf R™.
Then the Cartesian product C; x Cy is a convex subset of R™ x R™.

1.1.1 Examples of Convex Sets
(a) Open and closed balls in R™.
(b) Hyperplanes: {z : (a,z) =b, a € R, b € R}.

)
(c) Halfspaces: {z : (a,z) <b, a € R", b € R}.
(d) Non-Negative Orthant: R} = {x € R™ : x > 0}.
)

(e) Convex cones: C is called a cone if ax € C,Va > 0, x € C. A cone which
is convex is called a convex cone.
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Figure 2: Examples of convex sets

Proposition: Let {C; | i € I} be a collection of convex sets. Then:
(a) NierC; is convex, where each C; is convex.
(b) C1+Co={x+y|xzeCyec Cy}is convex.

(¢) AC is convex for any convex sets C' and scalar A. Furthermore, (A +X2)C =
A1 C + Ao C for positive Aq, As.

(d) C°, C are convex, i.e. the interior and closure of a convex set are convex.

(e) T(C), T~1(C) are convex, where T is a linear map.



Proof. Parts (a)-(c), (e) follows from the definition (Exercise!). Let’s prove (d).
Interior Let x,y € C°. Then there exists  such that balls with radius r centred
at z and y are both inside C.

Suppose A € [0,1] and ||z|| < r. By convexity of C, we have,

MA+A-Ny+z=ANz+2)+1-Ny+z)eC

Therefore, Az + (1 — \)y € C°. Hence C° is convex.
Closure Let x,y € C. Then there exists sequences {z} C C,{yr} C C such
that xr — x,yx — y. Suppose « € [0,1]. Then for each k,

Arp+(1=Nyr € C
But Az + (1 — A)yr = Az + (1 — \)y € C. Hence, C is convex. O

1.2 Convex and Affine Hulls
1.2.1 Convex Hull

Definition:(Convex Hull)
Let X be a subset of R™. The convex hull of X is defined by

conv(X) := ﬂ{C\ C'is convex and X C C}

In other words, conv(X) is the smallest convex set containing X.
The next proposition provides a good representation for elements in the convex
hull.

Proposition: For any subset X of R",
conv(X) = {Z)\ixi| Z)‘i =1, >0, x; € X}
i=1 i=1

Proof. Let C = {37 Nai| X i =1, \; >0, 2, € X}. Clearly, X C C.
Next, we check that C' is convex.

Let a = Y27 aja;, b = Y29_, Bjbj be elements of C, where a;,b; € C with
a;, B > 0and Y a; =) F; = 1. Suppose A € [0, 1], then

p q
Aa+ (1= Mb=> Xaia; + Y _(1—N)B;b;.
i=1 j=1

Since » .
DAY (1-NF =AY a+(1-X)) §=1
i— i=1 Jj=1

we have Aa + (1 — A)b € C. Hence, C is convex. Also, conv(X) C C by the
definition of conv(X).

Suppose a = Y A\;a; € C. Then since each a; € X C conv(X) and conv(X) is
convex, we have a € conv(X). Therefore, conv(X) =C. O
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Figure 3: Examples of convex hull

Let a,b € R™, define the interval
[a,b) :={Aa+ (1 —X)b| X € (0,1]}
The intervals (a, b], (a,b) are defined similarly.

Lemma: For a convex set C' € R™ with nonempty interior, take a € C° and
be C. Then [a,b) C C°.

Proof. Since b € C, for any € > 0, we have b € C + B, where B denotes the
closed unit ball centered at 0.
Take A € (0,1] and let 2 := Aa+ (1 — A)b. Let € be such that a + e22B C C.

zx+eB=Xa+ (1—-A)b+eB

CAa+(1-MN)[C+eB]+eB
=X+ (1-XNC+(2-)NeB

Bl +(1-NC
cCAC+(1-NCcCC

CAa+e

Hence x5 € C° and [a,b) C C°.

1.2.2 Affine Sets and Affine Hull

Given a,b € R”, the line connecting them is defined as
Lla,b] :={Aa+ (1 —N)b| A e R}
Note that there is no restriction on A.

Definition:(Affine Set) A subset S of R" is affine if for any a,b € S, we
have L[a,b] C S.



Definition:(Affine Combination)
Given z1, ..., z,, € R", an element in the form z = " | A\;z;, where Y i \; =
1 is called an affine combination of x1, ..., Z.,.

Proposition: A set S is affine if and only if it contains all affine combina-
tion of its elements.

Definition:(Affine Hull) The affine hull of a set X C R" is

aff(X) := n{S\ S is affine and X C S}
Proposition: For any subset X of R",
aff(X) = {Z)\zlw Z/\z =1, z; € X}
i=1 i=1

In fact, an affine set S C R™ is of the form = + V, where x € S and V is a
vector space called the subspace parallel to S.
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Figure 4: Affine hull and the parallel subspace



Lemma: Let S be nonempty. Then the following are equivalent:
1. S is affine
2. S is of the form x + V for some subspace V C R™ and = € S.
Also, V' is unique and equals to S — S.

Proof. Suppose S is affine. We first assume 0 € S. Let « € S and v € R. Since
0 € S, we have vz + (1 — 4)0 = va € S. Now, suppose z,y € S. Then z +y =
2(32 + 3y) € S. Hence, S is closed under addition and scalar multiplication.
Therefore, S = 0+ S is a linear subspace. If 0 ¢ S, then 0 € S — z for any
x €S. So S — x is a linear subspace. Therefore, S =x + V.

The other direction is simple, just use the fact that V is a linear subspace.
Now suppose S = x1 + Vi = x5 + V5, where x1,20 € S, Vi, V5 are linear
subspaces. Then 1 — x5 + V3 = V5. Since V5 is a subspace, ©1 — x5 € V7. So
Vo =21 —xo + V7 C V. Similarly, V3 C V5. Therefore V' is unique.

Since S=z+V,s0V=8—-2CS—-S5. Let u,v € S and z = u —v. Then
S —wv =V by the uniqueness of V. So z € S—v =V and hence S—S CV. O

Definition:(Dimension of affine and convex sets) The dimension of aff(X)
is defined to be the dimension of the subspace parallel to X. The dimension of
a convex set C is defined to be the dimension of aff(C).



