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MMAT 5340 Probability and Stochastic Analysis

Suggested Solution of Homework 2

11.29 Let x(n) =
[
P (Xn = 1) P (Xn = 2)

]
. Then

x(2) = x(0)A2 =
[
0.4 0.6

] [0.4 0.6
0.3 0.7

]2
=
[
0.334 0.666

]
.

Hence P (X2 = 1) = 0.334.

11.30 The stationary distribution p =
[
p1 p2

]
satisfies

p = pA ⇐⇒
{
p1 = 0.4p1 + 0.3p2
p2 = 0.6p1 + 0.7p2

⇐⇒ 2p1 = p2.

Since p1 + p2 = 1, we have p =
[
1
3

2
3

]
.

11.31 Solving

0 = |A− λI| =
∣∣∣∣ 0.4− λ 0.6

0.3 0.7− λ

∣∣∣∣ = λ2 − 1.1λ+ 0.1,

the eigenvalues of A are given by

λ1 = 1, λ2 =
1

10
.

Hence the rate of convergence is |λ2|n =
1

10n
.

11.32 Let px be the probability that, starting from x, the process hits 2 before 3. Then

p2 = 1, p3 = 0,

and

p1 = 0.4p1 + 0.4p2 + 0.2p3

= 0.4p1 + 0.4 + 0,

so that p1 =
2

3
.
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11.36 The graph of the Markov chain is given below:
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From the graph, we can see that 1 and 2 are transient states, while 3 and 4 are
recurrent states.

11.40 Let X = Z − 1. Then

P (X = 0) = P (Z = 1) = 0.5, P (X = 1) = P (Z = 2) = 0.52 = 0.25,

P (X ≥ 2) = 1− P (X = 0)− P (X = 2) = 0.25

Hence, the transition matrix is

P =

0.5 0.5 0
0.5 0.25 0.25
0 0.5 0.5


We can find the stationary distribution p =

[
p0 p1 p2

]
by solving pP = p: By

performing column operations,

P − I =

−0.5 0.5 0
0.5 −0.75 0.25
0 0.5 −0.5

 ∼
−0.5 0 0

0.5 −0.25 0.25
0 0.5 −0.5


∼

−0.5 0 0
0.5 −0.25 0
0 0.5 0

 ∼
 1 0 0
−1 1 0
0 −2 0

 .
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That is p0 = p1 = 2p2. Hence p =
[
0.4 0.4 0.2

]
.

The long-term average premium is

p0r0 + p1r1 + p2r2 = (0.4)(0.5 · 0 + 1) + (0.4)(0.5 · 1 + 1) + (0.2)(0.5 · 2 + 1)

= 1.4 thousands of dollars.

12.12 Let n and m be the quantity of up and down steps. Then{
n+m = 13− 2 = 11

n−m = 3− 2 = 1.

Hence n = 6,m = 5. Thus

P (S13 = 3|S2 = 2) =

(
11

6

)
(0.7)6(0.3)5 ≈ 0.1321.

12.13 By the reflection principle, every path from (2, 2) to (13, 3) which hits y = 1 corre-
sponds to a path from (2, 2) to (13,−1). Solving{

n+m = 13− 2 = 11

n−m = −1− 2 = −3,

we have n = 4,m = 7. The number of such path is
(
11
4

)
. Thus

P (S13 = 3, Sn > 1, n = 2, 3, . . . , 13|P2 = 2) =

[(
11

6

)
−
(

11

4

)]
(0.7)6(0.3)5 ≈ 0.0377.

12.14 Solving {
n+m = 10− 0 = 10

n−m = 2− 0 = 2,
=⇒

{
n = 6

m = 4.

So there are
(
10
6

)
paths from (0, 0) to (10, 2). By the reflection principle, every

path from (0, 0) to (10, 2) which hits y = −2 corresponds to a path from (0, 0) to
(10,−2− (2− (−2))) = (10,−6). Solving{

n+m = 10− 0 = 10

n−m = −6− 0 = −6,
=⇒

{
n = 2

m = 8.

So there are
(
10
2

)
paths from (0, 0) to (10,−6). Thus,

P (S10 = 2, Sn > −2, n = 0, . . . , 10) =

[(
10

6

)
−
(

10

2

)]
(0.5)10 ≈ 0.1611.

12.27 The risk-neutral probability p0, q0 can be found by E0P1 = P0:{
p0 · 2 + q0 · 0.3 = 1

p0 + q0 = 1
=⇒ p0 =

7

17
, q0 =

10

17
.

Hence, the fair price is given by

v = E0(P3 −K)+

= p30(2
3 − 1) + 3p20q0(2

2 · 0.3− 1) + 3p0q
2
0(0) + q30(0)

≈ 0.5485.
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13.20 Since Xn is the number of Heads during the first n tosses, we have

E(Xn+1 | Xn) =
1

2
(Xn + 1) +

1

2
Xn = Xn +

1

2
.

If Yn := 3Xn − cn is a martingale, then

Yn = E(Yn+1 | Y0, . . . , Yn) = E(Yn+1 |X0, . . . , Xn)

= E(3Xn+1 − c(n+ 1) | Xn)

= 3E(Xn+1 | Xn)− c(n+ 1)

= 3Xn +
3

2
− c(n+ 1)

= Yn +
3

2
− c.

Hence c =
3

2
.

13.30 Need to find c such that Mn = eSn−cn is a martingale:

Ee−1+X1−c = e−1 =⇒ e4/2 = FN(0,4)(1) = ec =⇒ c = 2.

For x > 0, f(x) = x3 is convex, since f ′′(x) = 6x > 0. Note that Mn > 0. By
Doob’s martingale inequality, for λ > 0, we have,

P

(
max

0≤n≤100
Mn ≥ λ

)
≤ EM3

100

λ3
.

Now
M3

100 = e−3e3S100e−300c = e−3e−300ce3X1 · · · e3X100 ,

so that

EM3
100 = e−3e−300c(Ee3X1)100 = e−3e−300(2)

(
e

(3)24
2

)100

= e1197.

Hence

P

(
max

0≤n≤100
Mn ≥ λ

)
≤ e1197

λ3
.

14.12 Note that τ4− τ3 and τ3− τ2 are i.i.d. Exp(λ) random variables, with λ = 3. Hence

τ4 − τ2 = (τ4 − τ3) + (τ3 − τ2) ∼ Γ(2, λ) = Γ(2, 3).

Therefore,

E(τ4 − τ2) = 2λ−1 =
2

3
,

Var(τ4 − τ2) = 2λ−2 =
2

9
.
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14.13 Since N(t)−N(s) is independent of N(u), u ≤ s, and N(t)−N(s) ∼ Poi(λ(t− s)),
we have

P(N(5/2) = 3 | N(1) = 1) = P(N(5/2)−N(1) = 2 | N(1) = 1)

= P(N(5/2)−N(1) = 2)

=
(λ(3/2))2

2!
e−λ(3/2)

=
81

8
e−9/2.

14.18 Note that EN(t) = VarN(t) = λt = t. By (35) and (36),

EX(t) = EN(t) · EZk = t · 2 = 2t,

VarX(t) = EN(t) · VarZk + VarN(t) · (EZk)2 = t · 3 + t · 22 = 7t.

15.24 The stationary distribution ρ =
[
ρ1 ρ2 ρ3

]
satisfies ρA = 0. Since ρ1+ρ2+ρ3 = 1,

we have

ρ =
1

1 + 5 + 2

[
1 5 2

]
=
[
1
8

5
8

1
4

]
.

15.25 Since 0 > λ2 > λ3, the rate of convergence is eλ2t = e−2t.

15.26 The transition matrix for the corresponding discrete-time Markov chain is

P =

0 1
2

1
2

0 0 1
1
3

2
3

0

 .
15.27 Let λ′i, 1 ≤ i ≤ 3, be the intensity of exit from state i, that is, the negative of

the diagonal entries of A. Then the stationary distribution π for the corresponding
discrete-time Markov chain is given by

π =
1

λ′1ρ1 + λ′2ρ2 + λ′3ρ3

[
λ′1ρ1 λ′2ρ2 λ′3ρ3

]
=

8

13

[
1
4

5
8

3
4

]
=
[

2
13

5
13

6
13

]
.


