Optimization Theory Tutorial 8

Wang Xia

2018/3/11

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Table of Contents

Supplementary Material

Table of Contents

Supplementary Material

Concepts

Direction of recession of C: we say that a vector d is a direction of recession of C if $x + \alpha d \in C$ for all $x \in C$ and $\alpha \ge 0$.

Recession of cone of C: the set of all directions of recession is said to be recession of cone of C. It is a cone containing the origin. It is denoted by R_C .

Lineality space: the set of direction of recession d whose opposite, -d, are also directions of recession:

$$L_C = R_C \cap (-R_C).$$

It is denoted by L_C . Thus $d \in L_C$ if and only if the entire line $\{x + \alpha d | a \in \Re\}$ is contained in C for every $x \in C$. Epigraph: the epigraph of a function $f : X \to [-\infty, \infty]$, where $X \subset \Re^n$, is defined to be the subset of \Re^{n+1} given by

$$epi(f) = \{(x, w) | x \in X, w \in \Re, f(x) \le w\}.$$

Theorem

Saddle Point: A pair of vectors $x^* \in X$ and $z^* \in Z$ is called a saddle point of ϕ if

$$\phi(x^*,z) \leq \phi(x^*,z^*) \leq \phi(x,z^*), \forall x \in X, \forall z \in Z.$$

minimax equality:

$$sup_{z\in Z}inf_{x\in X}\phi(x,z) = inf_{x\in X}sup_{z\in Z}\phi(x,z).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Saddle Point and Minimax Theory

Theorem

A pair (x^*, z^*) is a saddle point of ϕ if and only if the minimax equality holds, and x^* is an optimal solution of the problem:

minimizes
$$up_{z \in Z} \phi(x, z)$$
, subject to $x \in X$,

while z^* is an optimal solution of the problem

maximizeinf $_{x \in X} \phi(x, z)$, subject to $z \in Z$

Recession Cone Theorem

Let C be a nonempty closed convex set.

- (a) The recession cone R_C is closed and convex.
- (b) A vector d belongs to R_C if and only if there exists a vector $x \in C$ such that $x + \alpha d \in C$ for all $\alpha \ge 0$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Properties of Recession Cones

Let C be a nonempty closed convex set.

- (a) R_C contains a nonzero direction if and only if C is unbounded.
 (b) R_C = R_{ri(C)}.
- (c) For any collection of closed convex sets $C_i, i \in I$, where I is an arbitrary index set and $\bigcap_{i \in I} C_i \neq \emptyset$, we have

$$R_{\cap_{i\in I}C_i}=\cap_{i\in I}R_{C_i}.$$

(d) Let W be a compact and convex subset of \Re^m , and let A be an $m \times n$ matrix. The recession cone of the set

$$V = \{x \in C | Ax \in W\}$$

(assuming this set is nonempty) is $R_C \cap N(A)$, where N(A) is the nullspace of A.

Properties of Lineality Space

Let C be a nonempty closed convex set of \Re^n .

- (a) L_C is a subspace of \Re^n .
- (b) $L_C = L_{ri(C)}$.
- (c) For any collection of closed convex sets $C_i, i \in I$, where I is an arbitrary index set and $\bigcap_{i \in I} C_i \neq \emptyset$, we have

$$L_{\cap_{i\in I}C_i}=\cap_{i\in I}L_{C_i}.$$

(d) Let W be a compact and convex subset of \Re^m , and let A be an $m \times n$ matrix. The lineality space of the set

$$V = \{x \in C | Ax \in W\}$$

(assuming this set is nonempty) is $L_C \cap N(A)$, where N(A) is the nullspace of A.

Solution

Using

$$L_C = R_C \cap (-R_C).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

and Properties of R_C .

Decomposition of a convex set

Let C be a nonempty subset of \Re^n . Then, for every subspace S that is contained in the lineality space L_C , we have

$$C = S + (C \cap S^{\perp}).$$

Decomposition of a convex set

Let C be a nonempty subset of \Re^n . Then, for every subspace S that is contained in the lineality space L_C , we have

$$C = S + (C \cap S^{\perp}).$$

Proof: We can decompose \Re^n as $S + S^{\perp}$, so for $x \in C$, let x = d + z for some $d \in S$ and $z \in S^{\perp}$. Because $-d \in S \subset L_C$, the vector -d is a direction of recession of C, so the vector x - d, which is equal to z, belongs to C, implying that $z \in C \cap S^{\perp}$. Thus, we have x = d + z with $d \in S$ and $z \in C \cap S^{\perp}$ showing that $C \subset S + (C \cap S^{\perp})$.

Conversely, if $x \in S + (C \cap S^{\perp})$, then x = d + z with $d \in S$ and $z \in C \cap S^{\perp}$. Thus, we have $z \in C$. Furthermore, because $S \subset L_C$, the vector d is a direction of recession of C, implying that $d + z \in C$. Hence $x \in C$, showing that $S + (C \cap S^{\perp}) \subset C$. **Q.E.D.**

Let $f:\Re^n\to (-\infty,\infty]$ be a closed proper convex function and consider the level sets

$$V_{\gamma} = \{ x | f(x) \le \gamma \}, \quad \gamma \in \Re.$$

Then:

(a) All the nonempty level sets V_{γ} have the same recession cone, denoted R_f , and given by

$$R_f = \{ d | (d, 0) \in R_{epi(f)} \},\$$

where $R_{epi(f)}$ is the recession cone of the epigraph of f. (b) If one nonempty level set V_{γ} is compact, then all of these level sets are compact.

Solution

(a) Fix a γ such that V_{γ} is nonempty, consider

$$S = \{(x,\gamma)|f(x) \leq \gamma\},$$

$$S = epi(f) \cap \{(x,r)|x \in \Re^n\}.$$

$$R_S = R_{epi(f)} \cap \{(d,0)|d \in \Re^n\} = \{(d,0)|(d,0) \in R_{epi(f)}\},$$
independent of γ .
(b)

 $V_\gamma \ {\sf compact} \Leftrightarrow R_{V_\gamma} {\sf does} \ {\sf NOT} \ {\sf contain} \ {\sf a} \ {\sf nonzero} \ {\sf direction}$

 $\Rightarrow R_{V_{\gamma_1}} {\rm does} \ {\rm NOT} \ {\rm contain} \ {\rm a} \ {\rm nonzero} \ {\rm direction}$ $\Rightarrow V_{\gamma_1} \ {\rm compact}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ