Optimization Theory Tutorial 4

2018/2/5

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Table of Contents

[Quick Review](#page-2-0)

[Exercise](#page-10-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Table of Contents

[Quick Review](#page-2-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

[Exercise](#page-10-0)

Continuity of Convex Functions

Theorem

If $f: \Re^n \to \Re$ is convex, then it is continuous. More generally, if $f:\real^n\to (-\infty,\infty]$ is a proper convex function, then f , restricted to $dom(f)$, is continuous over the relative interior of $dom(f)$.

KORK ERKER ADE YOUR

Continuity of Convex Functions

Theorem

If C is closed interval of the real line, and $f: C \to \Re$ is closed and convex, then f is continuous over C .

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

Hyperplane

A hyperplane H in \Re^n is a set of the form $\{x | a'x = b\}$ where a is a nonzero vector in \real^n and b is a scalar. If $\bar{x} \in H$, then

$$
H = x|a'x = a'\bar{x}\},\
$$

or

$$
H = \bar{x} + \{x|a'x = 0\}.
$$

 H is an affine set that is parallel to the subspace $\{x | a'x = 0.\}$

$$
\{x|a'x \ge b\}, \{x|a'x \le b\}
$$

are called the **closed halfspaces** associated with the hyperplane H.

$$
\{x|a'x > b\}, \{x|a'x < b\}
$$

are called the open halfspaces associated [wit](#page-4-0)h [t](#page-6-0)[h](#page-6-0)[e](#page-5-0) h[yp](#page-1-0)[er](#page-9-0)[p](#page-10-0)[l](#page-1-0)[a](#page-2-0)[n](#page-9-0)[e](#page-10-0) [H](#page-0-0)[.](#page-23-0)

 000

Supporting Hyperplane Theorem

Theorem

Let C be a nonempty convex subset of \Re^n and let \bar{x} be a vector in \real^n . If $\bar x$ is not an interior point of C , there exists a hyperplane that passes through \bar{x} and contains C in one of its closed halfplaces, i.e., there exists a vector $a\neq 0$ such that

$$
a'\bar{x} \le a'x, \forall x \in C.
$$

KORK STRAIN A BAR SHOP

Separating Hyperplane Theorem

Theorem

Let C_1 and C_2 be two nonempty convex subsets of \mathbb{R}^n . If C_1 and C_2 are disjoint, there exists a hyperplane that separates them, i.e., there exists a vector $a \neq 0$ such that

$$
a'x_1 \neq a'x_2, \forall x_1 \in C_1, \forall x_2 \in C_2.
$$

KORK STRAIN A BAR SHOP

Strict Separation Theorem

Theorem

Let C_1 and C_2 be two disjoint nonempty convex sets. There exists a hyperplane that strictly separates C_1 and C_2 under any one of the following five conditions:

(1)
$$
C_2 - C_1
$$
 is closed.

- (2) C_1 is closed and C_2 is compact.
- (3) C_1 and C_2 are polyhedral.
- (4) C_1 and C_2 are closed, and

$$
R_{C_1} \cap R_{C_2} = L_{C_1} \cap L_{C_2},
$$

 2990

where R_{C_i} and L_{C_i} denotes the recession cone and the lineality space of C_i , $i = 1, 2$.

 (5) C_1 C_1 C_1 is closed, C_2 C_2 is polyhedral, and $R_{C_1} \cap R_{C_2} \subset L_{C_1}.$ $R_{C_1} \cap R_{C_2} \subset L_{C_1}.$

Corollary of Strict Separation Theorem

Theorem

The closure of the convex hull of a set C is the intersection of the closed halfspaces that contain C . In particular, a closed convex set is the intersection of the closed halfspaces that contain it.

KORK STRAIN A BAR SHOP

 L [Exercise](#page-10-0)

Table of Contents

[Quick Review](#page-2-0)

[Exercise](#page-10-0)

イロト イ御 トイミト イミト ニミー りんぴ

EX 1

Give an example of two closed convex sets that are disjoint but cannot be strictly separated.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

EX 1

Give an example of two closed convex sets that are disjoint but cannot be strictly separated.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

solution:

Take
$$
C = \{x \in R^2 | x_2 \neq 0\}
$$

\n $D = \{x \in R^2_+ | x_1 x_2 \geq 1\}.$

Express the closed convex set $\{x\in \Re_+^2 | x_1x_2 \geq 1\}$ as an intersection of halfspaces.

Solution. The set is the intersection of all supporting halfspaces at points in its boundary, which is given by $\{x \in \mathbb{R}^2_+ \mid x_1x_2 = 1\}$. The supporting hyperplane at $x = (t, 1/t)$ is given by

$$
x_1/t^2 + x_2 = 2/t,
$$

so we can express the set as

$$
\bigcap_{t>0} \{x \in \mathbf{R}^2 \mid x_1/t^2 + x_2 \ge 2/t\}.
$$

KORK STRAIN A BAR SHOP

Let $C = \{x \in \Re^n | ||x||_{\infty} \leq 1\}$, the l_{∞} -norm unit ball in \Re^n , and let \hat{x} be a point in the boundary of C . Identity the supporting hyperplanes of C at \hat{x} explicitly.

Solution. $s^T x > s^T \hat{x}$ for all $x \in C$ if and only if

$$
s_i < 0 \quad \hat{x}_i = 1 s_i > 0 \quad \hat{x}_i = -1 s_i = 0 \quad -1 < \hat{x}_i < 1
$$

KORK ERKER ADE YOUR

$$
Ex\ 3
$$

Let $f: \Re^n \to \Re$ be a convex function and X be a bounded set in \real^n . Show that f is Lipschitz continuous over X , i.e., there exists a positive scalar L such that

$$
|f(x) - f(y)| \le L||x - y||, \forall x, y \in X.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Let ϵ be a positive scalar and let C_{ϵ} be the set given by

$$
C_{\epsilon} = \left\{ z \mid ||z - x|| \le \epsilon, \text{ for some } x \in \text{cl}(X) \right\}.
$$

We claim that the set C_{ϵ} is compact. Indeed, since X is bounded, so is its closure, which implies that $||z|| \leq \max_{x \in cl(X)} ||x|| + \epsilon$ for all $z \in C_{\epsilon}$, showing that C_{ϵ} is bounded. To show the closedness of C_{ϵ} , let $\{z_k\}$ be a sequence in C_{ϵ} converging to some z. By the definition of C_{ϵ} , there is a corresponding sequence $\{x_k\}$ in $\operatorname{cl}(X)$ such that

$$
||z_k - x_k|| \le \epsilon, \qquad \forall \ k. \tag{2.1}
$$

KORK EX KEY CRACK

Because $\text{cl}(X)$ is compact, $\{x_k\}$ has a subsequence converging to some $x \in \text{cl}(X)$. Without loss of generality, we may assume that $\{x_k\}$ converges to $x \in \text{cl}(X)$. By taking the limit in Eq. (2.1) as $k \to \infty$, we obtain $||z - x|| \leq \epsilon$ with $x \in \text{cl}(X)$, showing that $z \in C_{\epsilon}$. Hence, C_{ϵ} is closed.

 Fx 3

We now show that f has the Lipschitz property over X . Let x and y be two distinct points in X. Then, by the definition of C_{ϵ} , the point

$$
z = y + \frac{\epsilon}{\|y - x\|}(y - x)
$$

is in C_{ϵ} . Thus

$$
y = \frac{||y - x||}{||y - x|| + \epsilon}z + \frac{\epsilon}{||y - x|| + \epsilon}x,
$$

showing that y is a convex combination of $z \in C_{\epsilon}$ and $x \in C_{\epsilon}$. By convexity of f , we have

$$
f(y) \le \frac{\|y-x\|}{\|y-x\|+\epsilon} f(z) + \frac{\epsilon}{\|y-x\|+\epsilon} f(x),
$$

implying that

$$
f(y)-f(x)\leq \frac{\|y-x\|}{\|y-x\|+\epsilon}\big(f(z)-f(x)\big)\leq \frac{\|y-x\|}{\epsilon}\left(\max_{u\in C_{\epsilon}}f(u)-\min_{v\in C_{\epsilon}}f(v)\right),
$$

KOD KAP KED KED E VOQO

where in the last inequality we use Weierstrass' theorem $(f$ is continuous over \mathbb{R}^n by Prop. 1.4.6 and C_{ϵ} is compact). By switching the roles of x and y, we similarly obtain

$$
f(x) - f(y) \le \frac{\|x - y\|}{\epsilon} \left(\max_{u \in C_{\epsilon}} f(u) - \min_{v \in C_{\epsilon}} f(v) \right),\,
$$

which combined with the preceding relation yields $|f(x) - f(y)| \le L ||x - y||$, where $L = \left(\max_{u \in C_{\epsilon}} f(u) - \min_{v \in C_{\epsilon}} f(v) \right) / \epsilon.$

KORK EX KEY CRACK

[Exercise](#page-19-0)

Let C_1 and C_2 be nonempty convex subset of \Re^n , and let B denote the unit ball in \real^n , $B=\{||x||\leq 1\}.$ A hyperplane H is said to separate strongly C_1 and C_2 and if there exists an $\epsilon > 0$ such that $C_1 + \epsilon B$ is contained in one of the open halfspaces associated with H and $C_2 + \epsilon B$ is contained in the other. Show that:

- (a) The following three conditions are equivalent.
	- (i) There exists a hyperplane separating strongly C_1 and C_2 . (ii) There exists a vector $a \in \Re^n$ such that $inf_{x \in C_1} a'x > sup_{x \in C_2} a'x.$ (iii) $inf_{x_1 \in C_1, x_2 \in C_2} ||x_1 - x_2|| > 0, i.e., 0 \neq cl(C_2 - C_1).$
- (b) If C_1 and C_2 are disjoint, any one of the five conditions for strict separation, implies that C_1 and C_2 can be strongly separated.

(a) We first show that (i) implies (ii). Suppose that C_1 and C_2 can be separated strongly. By definition, this implies that for some nonzero vector $a \in \mathbb{R}^n$, $b \in \mathbb{R}$, and $\epsilon > 0$, we have

$$
C_1 + \epsilon B \subset \{x \mid a'x > b\},
$$
\n
$$
C_2 + \epsilon B \subset \{x \mid a'x < b\},
$$

where B denotes the closed unit ball. Since $a \neq 0$, we also have

$$
\inf \{ a' y \mid y \in B \} < 0, \qquad \sup \{ a' y \mid y \in B \} > 0.
$$

Therefore, it follows from the preceding relations that

$$
b \le \inf \{ a'x + \epsilon a'y \mid x \in C_1, y \in B \} < \inf \{ a'x \mid x \in C_1 \},\
$$

 $b \ge \sup\{a'x + \epsilon a'y \mid x \in C_2, y \in B\} > \sup\{a'x \mid x \in C_2\}.$

Thus, there exists a vector $a \in \mathbb{R}^n$ such that

$$
\inf_{x \in C_1} a'x > \sup_{x \in C_2} a'x,
$$

Next, we show that (ii) implies (iii). Suppose that (ii) holds, i.e., there exists some vector $a \in \mathbb{R}^n$ such that

$$
\inf_{x \in C_1} a'x > \sup_{x \in C_2} a'x,\tag{2.15}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Using the Schwartz inequality, we see that

$$
0 < \inf_{x \in C_1} a'x - \sup_{x \in C_2} a'x
$$
\n
$$
= \inf_{x_1 \in C_1, x_2 \in C_2} a'(x_1 - x_2),
$$
\n
$$
\leq \inf_{x_1 \in C_1, x_2 \in C_2} \|a\| \|x_1 - x_2\|.
$$

It follows that

$$
\inf_{x_1 \in C_1, x_2 \in C_2} ||x_1 - x_2|| > 0,
$$

thus proving (iii).

Finally, we show that (iii) implies (i). If (iii) holds, we have for some $\epsilon > 0$,

$$
\inf_{x_1 \in C_1, x_2 \in C_2} ||x_1 - x_2|| > 2\epsilon > 0.
$$

From this we obtain for all $x_1 \in C_1$, all $x_2 \in C_2$, and for all y_1, y_2 with $||y_1|| \leq \epsilon$, $||y_2|| \leq \epsilon$,

$$
||(x_1+y_1)-(x_2+y_2)|| \ge ||x_1-x_2||-||y_1||-||y_2|| > 0,
$$

which implies that $0 \notin (C_1 + \epsilon B) - (C_2 + \epsilon B)$. Therefore, the convex sets $C_1 + \epsilon B$ and $C_2 + \epsilon B$ are disjoint. By the Separating Hyperplane Theorem, we see that $C_1 + \epsilon B$ and $C_2 + \epsilon B$ can be separated, i.e., $C_1 + \epsilon B$ and $C_2 + \epsilon B$ lie in opposite closed halfspaces associated with the hyperplane that separates them. Then, the sets $C_1 + (\epsilon/2)B$ and $C_2 + (\epsilon/2)B$ lie in opposite open halfspaces, which by definition implies that C_1 and C_2 can be separated strongly.

(b) Since C_1 and C_2 are disjoint, we have $0 \notin (C_1 - C_2)$. Any one of conditions (2) - (5) of Prop. 2.4.3 imply condition (1) of that proposition (see the discussion in the proof of Prop. 2.4.3), which states that the set $C_1 - C_2$ is closed, i.e.,

$$
cl(C_1 - C_2) = C_1 - C_2.
$$

Hence, we have $0 \notin cl(C_1 - C_2)$, which implies that

$$
\inf_{x_1 \in C_1, x_2 \in C_2} ||x_1 - x_2|| > 0.
$$

From part (a), it follows that there exists a hyperplane separating C_1 and C_2 strongly.

KORK EX KEY CRACK