Optimization Theory Tutorial 4

2018/2/5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Table of Contents

Quick Review

Exercise

Table of Contents

Quick Review

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Exercise

Continuity of Convex Functions

Theorem If $f: \Re^n \to \Re$ is convex, then it is continuous. More generally, if $f: \Re^n \to (-\infty, \infty]$ is a proper convex function, then f, restricted to dom(f), is continuous over the relative interior of dom(f).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Continuity of Convex Functions

Theorem

If C is closed interval of the real line, and $f: C \to \Re$ is closed and convex, then f is continuous over C.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Hyperplane

A hyperplane H in \Re^n is a set of the form $\{x|a'x=b\}$ where a is a nonzero vector in \Re^n and b is a scalar. If $\bar{x} \in H$, then

$$H = x | a'x = a'\bar{x} \},$$

or

$$H = \bar{x} + \{x | a'x = 0\}.$$

H is an affine set that is parallel to the subspace $\{x|a'x=0.\}$

$$\{x|a'x \ge b\}, \{x|a'x \le b\}$$

are called the **closed halfspaces** associated with the hyperplane H.

$$\{x | a'x > b\}, \{x | a'x < b\}$$

are called the **open halfspaces** associated with the hyperplane $H_{\underline{a}}$

Supporting Hyperplane Theorem

Theorem

Let C be a nonempty convex subset of \Re^n and let \bar{x} be a vector in \Re^n . If \bar{x} is not an interior point of C, there exists a hyperplane that passes through \bar{x} and contains C in one of its closed halfplaces, i.e., there exists a vector $a \neq 0$ such that

$$a'\bar{x} \le a'x, \forall x \in C.$$

Separating Hyperplane Theorem

Theorem

Let C_1 and C_2 be two nonempty convex subsets of \Re^n . If C_1 and C_2 are disjoint, there exists a hyperplane that separates them, i.e., there exists a vector $a \neq 0$ such that

$$a'x_1 \neq a'x_2, \forall x_1 \in C_1, \forall x_2 \in C_2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Strict Separation Theorem

Theorem

Let C_1 and C_2 be two disjoint nonempty convex sets. There exists a hyperplane that strictly separates C_1 and C_2 under any one of the following five conditions:

(1)
$$C_2 - C_1$$
 is closed.

- (2) C_1 is closed and C_2 is compact.
- (3) C_1 and C_2 are polyhedral.
- (4) C_1 and C_2 are closed, and

$$R_{C_1} \cap R_{C_2} = L_{C_1} \cap L_{C_2},$$

where R_{C_i} and L_{C_i} denotes the recession cone and the lineality space of C_i , i = 1, 2.

(5) C_1 is closed, C_2 is polyhedral, and $R_{C_1} \cap \mathop{R}_{C_2} \subset L_{C_1}$.

Corollary of Strict Separation Theorem

Theorem

The closure of the convex hull of a set C is the intersection of the closed halfspaces that contain C. In particular, a closed convex set is the intersection of the closed halfspaces that contain it.

Table of Contents

Quick Review

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Exercise

Optimization Theory			
Exercise			

EX 1

Give an example of two closed convex sets that are disjoint but cannot be strictly separated.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Give an example of two closed convex sets that are disjoint but cannot be strictly separated.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

solution:

Take
$$C = \{x \in R^2 | x_2 \neq 0\}$$

 $D = \{x \in R^2_+ | x_1 x_2 \ge 1\}.$

Express the closed convex set $\{x \in \Re^2_+ | x_1 x_2 \ge 1\}$ as an intersection of halfspaces.

Solution. The set is the intersection of all supporting halfspaces at points in its boundary, which is given by $\{x \in \mathbf{R}^2_+ \mid x_1x_2 = 1\}$. The supporting hyperplane at x = (t, 1/t) is given by

$$x_1/t^2 + x_2 = 2/t,$$

so we can express the set as

$$\bigcap_{t>0} \{ x \in \mathbf{R}^2 \mid x_1/t^2 + x_2 \ge 2/t \}.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let $C = \{x \in \Re^n | ||x||_{\infty} \le 1\}$, the l_{∞} -norm unit ball in \Re^n , and let \hat{x} be a point in the boundary of C. Identity the supporting hyperplanes of C at \hat{x} explicitly.

Solution. $s^T x \ge s^T \hat{x}$ for all $x \in C$ if and only if

$$s_i < 0 \quad \hat{x}_i = 1 s_i > 0 \quad \hat{x}_i = -1 s_i = 0 \quad -1 < \hat{x}_i < 1.$$

Let $f: \Re^n \to \Re$ be a convex function and X be a bounded set in \Re^n . Show that f is Lipschitz continuous over X, i.e., there exists a positive scalar L such that

$$|f(x) - f(y)| \le L||x - y||, \forall x, y \in X.$$

Let ϵ be a positive scalar and let C_{ϵ} be the set given by

$$C_{\epsilon} = \left\{ z \mid ||z - x|| \le \epsilon, \text{ for some } x \in \operatorname{cl}(X) \right\}.$$

We claim that the set C_{ϵ} is compact. Indeed, since X is bounded, so is its closure, which implies that $||z|| \leq \max_{x \in cl(X)} ||x|| + \epsilon$ for all $z \in C_{\epsilon}$, showing that C_{ϵ} is bounded. To show the closedness of C_{ϵ} , let $\{z_k\}$ be a sequence in C_{ϵ} converging to some z. By the definition of C_{ϵ} , there is a corresponding sequence $\{x_k\}$ in cl(X) such that

$$\|z_k - x_k\| \le \epsilon, \qquad \forall k. \tag{2.1}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Because cl(X) is compact, $\{x_k\}$ has a subsequence converging to some $x \in cl(X)$. Without loss of generality, we may assume that $\{x_k\}$ converges to $x \in cl(X)$. By taking the limit in Eq. (2.1) as $k \to \infty$, we obtain $||z - x|| \le \epsilon$ with $x \in cl(X)$, showing that $z \in C_{\epsilon}$. Hence, C_{ϵ} is closed.

We now show that f has the Lipschitz property over X. Let x and y be two distinct points in X. Then, by the definition of C_{ϵ} , the point

$$z = y + \frac{\epsilon}{\|y - x\|}(y - x)$$

is in C_{ϵ} . Thus

$$y = \frac{\|y - x\|}{\|y - x\| + \epsilon}z + \frac{\epsilon}{\|y - x\| + \epsilon}x,$$

showing that y is a convex combination of $z \in C_{\epsilon}$ and $x \in C_{\epsilon}$. By convexity of f, we have

$$f(y) \le \frac{\|y - x\|}{\|y - x\| + \epsilon} f(z) + \frac{\epsilon}{\|y - x\| + \epsilon} f(x),$$

implying that

$$f(y) - f(x) \le \frac{\|y - x\|}{\|y - x\| + \epsilon} \left(f(z) - f(x) \right) \le \frac{\|y - x\|}{\epsilon} \left(\max_{u \in C_{\epsilon}} f(u) - \min_{v \in C_{\epsilon}} f(v) \right),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

where in the last inequality we use Weierstrass' theorem (f is continuous over \Re^n by Prop. 1.4.6 and C_{ϵ} is compact). By switching the roles of x and y, we similarly obtain

$$f(x) - f(y) \le \frac{\|x - y\|}{\epsilon} \left(\max_{u \in C_{\epsilon}} f(u) - \min_{v \in C_{\epsilon}} f(v) \right),$$

which combined with the preceding relation yields $|f(x) - f(y)| \leq L ||x - y||$, where $L = (\max_{u \in C_{\epsilon}} f(u) - \min_{v \in C_{\epsilon}} f(v))/\epsilon$.

Let C_1 and C_2 be nonempty convex subset of \Re^n , and let B denote the unit ball in \Re^n , $B = \{||x|| \le 1\}$. A hyperplane H is said to separate strongly C_1 and C_2 and if there exists an $\epsilon > 0$ such that $C_1 + \epsilon B$ is contained in one of the open halfspaces associated with H and $C_2 + \epsilon B$ is contained in the other. Show that:

- (a) The following three conditions are equivalent.
 - (i) There exists a hyperplane separating strongly C_1 and C_2 .
 - (ii) There exists a vector $a \in \Re^n$ such that

 $inf_{x\in C_1}a'x > sup_{x\in C_2}a'x.$

(iii) $inf_{x_1 \in C_1, x_2 \in C_2} ||x_1 - x_2|| > 0, i.e., 0 \neq cl(C_2 - C_1).$

(b) If C_1 and C_2 are disjoint, any one of the five conditions for strict separation, implies that C_1 and C_2 can be strongly separated.

(a) We first show that (i) implies (ii). Suppose that C_1 and C_2 can be separated strongly. By definition, this implies that for some nonzero vector $a \in \Re^n$, $b \in \Re$, and $\epsilon > 0$, we have

$$C_1 + \epsilon B \subset \{x \mid a'x > b\},\$$
$$C_2 + \epsilon B \subset \{x \mid a'x < b\},\$$

where B denotes the closed unit ball. Since $a \neq 0$, we also have

$$\inf\{a'y \mid y \in B\} < 0, \qquad \sup\{a'y \mid y \in B\} > 0.$$

Therefore, it follows from the preceding relations that

$$b \le \inf\{a'x + \epsilon a'y \mid x \in C_1, y \in B\} < \inf\{a'x \mid x \in C_1\},$$
$$b \ge \sup\{a'x + \epsilon a'y \mid x \in C_2, y \in B\} > \sup\{a'x \mid x \in C_2\}$$

Thus, there exists a vector $a \in \Re^n$ such that

$$\inf_{x \in C_1} a'x > \sup_{x \in C_2} a'x,$$

Next, we show that (ii) implies (iii). Suppose that (ii) holds, i.e., there exists some vector $a \in \Re^n$ such that

$$\inf_{x \in C_1} a'x > \sup_{x \in C_2} a'x,$$
(2.15)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Using the Schwartz inequality, we see that

$$0 < \inf_{x \in C_1} a'x - \sup_{x \in C_2} a'x$$

= $\inf_{x_1 \in C_1, \ x_2 \in C_2} a'(x_1 - x_2),$
 $\leq \inf_{x_1 \in C_1, \ x_2 \in C_2} ||a|| ||x_1 - x_2||.$

It follows that

$$\inf_{x_1 \in C_1, \, x_2 \in C_2} \|x_1 - x_2\| > 0,$$

thus proving (iii).

Finally, we show that (iii) implies (i). If (iii) holds, we have for some $\epsilon > 0$,

$$\inf_{x_1 \in C_1, x_2 \in C_2} \|x_1 - x_2\| > 2\epsilon > 0.$$

From this we obtain for all $x_1 \in C_1$, all $x_2 \in C_2$, and for all y_1, y_2 with $||y_1|| \le \epsilon$, $||y_2|| \le \epsilon$,

$$||(x_1 + y_1) - (x_2 + y_2)|| \ge ||x_1 - x_2|| - ||y_1|| - ||y_2|| > 0,$$

which implies that $0 \notin (C_1 + \epsilon B) - (C_2 + \epsilon B)$. Therefore, the convex sets $C_1 + \epsilon B$ and $C_2 + \epsilon B$ are disjoint. By the Separating Hyperplane Theorem, we see that $C_1 + \epsilon B$ and $C_2 + \epsilon B$ can be separated, i.e., $C_1 + \epsilon B$ and $C_2 + \epsilon B$ lie in opposite closed halfspaces associated with the hyperplane that separates them. Then, the sets $C_1 + (\epsilon/2)B$ and $C_2 + (\epsilon/2)B$ lie in opposite open halfspaces, which by definition implies that C_1 and C_2 can be separated strongly.

(b) Since C_1 and C_2 are disjoint, we have $0 \notin (C_1 - C_2)$. Any one of conditions (2)-(5) of Prop. 2.4.3 imply condition (1) of that proposition (see the discussion in the proof of Prop. 2.4.3), which states that the set $C_1 - C_2$ is closed, i.e.,

$$cl(C_1 - C_2) = C_1 - C_2.$$

Hence, we have $0 \notin cl(C_1 - C_2)$, which implies that

$$\inf_{x_1 \in C_1, x_2 \in C_2} \|x_1 - x_2\| > 0.$$

From part (a), it follows that there exists a hyperplane separating C_1 and C_2 strongly.

(日) (日) (日) (日) (日) (日) (日) (日)