
Differentiability
If a function  in two variables is differentiable at ,
then geometrically it means that there exists a tangent plane to
the graph  of  at the point  on the
graph. An equation which describes this tangent plane is:

or equivalently:

Hence, this is the plane in  which contains the point
, and has  as a

normal vector.

Let  be a function in  variables. The existence of 
and  does *not* guarantee the differentiability of  at 

. However,

Theorem.

If  and  are continuous on an open region containing 
, then  is differentiable at .

Theorem.

If  is differentiable at , then it is continuous at .

Higher Order Partial Derivatives
Since,  is itself a function in  variables, we can consider its

partial derivative with respect to any of the variables . And we
can further consider partial derivatives of that partial derivative,
and so on. The notation is as follows:

For ,
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Partial Derivatives
Chain Rule

f(x, y) (a, b)

z = f(x, y) f (a, b, f(a, b))

z = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b),

−fx(a, b)(x − a) − fy(a, b)(y − b) + (z − f(a, b)) = 0.
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For ,

For ,

Theorem.

Let  and  be two of the variables of a function . If  and 
 are continuous on an open region containing a point ,

then:

Chain Rule
Theorem. If  is a differentiable function in 
variables, and each  ( ) is a
differentiable function in  variables, then  is differentiable as
a function in , with:

Definition.

The gradient of  at  is:

Hence,
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