
Cross Product
Given a plane containing the origin which is the linear span of 
, , we want to find a normal vector  perpendicular to it. To
do so, observe that:

for both expressions are determinants of matrices with
repeated rows. By the definition of the cofactor expansion
along the first row, we have:

Definition.

The cross product of  and  is
the vector:

For nonzero vectors , their cross product  is
perpendicular to both  and .

Properties of the Cross Product
1.

2.

3.
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Given  in , there are exactly two unit vectors in 

 which are perpendicular to both  and . Namely:

10.
For  in ,

where  is the angle ( ) between  and . 

11.
Two nonzero vectors  are parallel to each other if
and only if . In particular,

⃗v × w⃗ = −(w⃗ × ⃗v)

(s ⃗v) × (rw⃗) = (rs)( ⃗v × w⃗), r, s ∈ R
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Example.

Let two planes in  be given:

where  ( ). Suppose  and  are
not parallel to each other. Then, the two planes are non‑
parallel, and the intersection of the two planes is a line
parallel to the vector . Note that the vector  is
nonzero, since  and  are by assumption non‑parallel.

Distance Between a Point and a Plane
Given a plane in  corresponding to:

The (minimal) distance between a point  and the plane
is:

where  and .
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