
Properties of the Determinant
Let  be an  matrix.

where  is the transpose of , defined by . This

follows from the fact that  may be computed from the
cofactor expansion along any row or column.

If  is an upper or lower triangular matrix, then  is equal
to the product of its diagonal entries:

In particular, the determinant of the identity matrix is equal to
one.

If one row or one column of  consists entirely of zeroes, then 
.

If a matrix  is obtained from a square matrix  by switching
two rows, then .

If one row (column) of  is equal to a scalar multiple of another
row (column), then .

The determinant of an elementary matrix is nonzero.

Week 4
Deteminants
Cramer's Rule

A n × n

det A = det A⊤,

A⊤ A A⊤
ij = Aji

det A

A det A

det

⎛⎜⎜⎜⎜⎜⎝

a11 ∗ ∗ ∗
0 a22 ∗ ∗

0 0 ⋱ ∗
0 0 0 ann

⎞⎟⎟⎟⎟⎟⎠
= a11a22 ⋯ ann

A

det A = 0

det

⎛⎜⎜⎜⎝
1 2 3 −5
0 0 0 0
3 4 −7 9
0 3 1 8

⎞⎟⎟⎟⎠
= 0

det

⎛⎜⎜⎜⎝
1 2 0 −5
6 −7 0 3
3 4 0 9
0 3 0 8

⎞⎟⎟⎟⎠
= 0

B A

det B = − det A

A

det A = 0



If  is an  elementary matrix, then 
.

Theorem.
 is invertible if and only if .

Proof.
>

By a previous result,  is invertible if and only if it is row equivalent
to . 
>

Suppose  is invertible, then there exist elementary matrices 
 such that:

We have:

Hence, . 
>

If  is not invertible, then it is row equivalent to a matrix with a row
consisting entirely of zeroes. Hence, there exist elementary
matrices , such that:

Since the determinants of elementary matrices are nonzero, we
conclude that . 

◼

E n × n

det(EA) = (det E)(det A)

A det A ≠ 0

A

I

A

E1, E2, … , Ek

Ek ⋯ E2E1A = I.

(det Ek) ⋯ (det E2)(det E1)(det A) = det I = 1

det A ≠ 0

A

E1, E2, … Ek

0 = det(Ek … E2E1A) = (det Ek) ⋯ (det E2)(det E1)(det A).

det A = 0



Remark.
Suppose a matrix  is invertible, then there are elementary
matrices  such that:

or equivalently:

Since the inverse of an elementary matrix is an elementary
matrix, we conclude that a matrix  is invertible if and only if it
is a product of elementary matrices.

Theorem.
Let  be  matrices. Then,

Proof.
>

Suppose  is non‑invertible. Then, . Moreover, there
exists a nonzero  such that . We have: 
>

In other words, the matrix equation  has a nonzero
solution, which implies that  is non‑invertible. Hence, 

. 
>

Suppose  is invertible but  is not. Then, , and there
exists  such that . Let  (note that  is
invertible). 
>

We have:

So,  has a nonzero solution. By the same argument as
before, we conclude that in this case . 
>

A

E1, … , Ek

Ek ⋯ E1A = I,

A = E−1
1 ⋯ E−1

k .

A

A, B n × n

det(AB) = (det A)(det B).

B det(B) = 0

⃗v ∈ Rn B ⃗v = 0⃗

(AB) ⃗v = A(B ⃗v) = A0⃗ = 0⃗.

(AB)x⃗ = 0⃗
AB

0 = det(AB) = det(A) det(B)

B A det(A) = 0

⃗v ≠ 0 A ⃗v = 0⃗ w⃗ = B−1 ⃗v ≠ 0 B−1

(AB)w⃗ = (AB)B−1 ⃗v = A(BB−1) ⃗v = A ⃗v = 0⃗.

(AB)x⃗ = 0⃗
det(AB) = det(A) det(B)



Now, suppose  and  are both invertible. There are elementary
matrices  such that . Hence:

This follows from the fact that  for any 
elementary matrix  and  matrix . 

◼

Note that , even if .

Corollary.
If  is invertible, then:

Adjoint of a Matrix
The adjoint of an  matrix  is the  matrix 

 defined by:

Example.
>

Observe that:

And similarly for . 
>

Hence,

A B

E1, … , Ek A = E1E2 ⋯ Ek

det(AB) = det(E1 ⋯ EkB) = det(E1) ⋯ det(Ek) det(B) = det(A) det(B).

det(EC) = det(E) det(C) n × n

E n × n C

det(AB) = det(A) det(B) = det(BA) AB ≠ BA

A

det(A−1) = .
1

det A

n × n A n × n

adjA = ((adj A)ij)

(adj A)ij = (−1)i+j ∣∣Mji∣∣ .

adj A =
⎛⎜⎜⎝

(−1)1+1 |M11| (−1)1+2 |M21| ⋯ (−1)1+n |Mn1|

⋮ ⋯ ⋯ ⋮
(−1)n+1 |M1n| ⋯ ⋯ (−1)n+n |Mnn|

⎞⎟⎟⎠

adj ( a b

c d
) = ( d −b

−c a
)

(A(adj A))ij =
n

∑
k=1

Aik(adj A)kj

=
n

∑
k=1

aik(−1)k+j ∣∣Mjk∣∣ = { det A  if i = j,
0  if i ≠ j.

(adj A)A

⎛ det 0 ⋯ ⋯ 0 ⎞



>

If  is invertible, then , and we have:

Cramer's Rule
Suppose an  matrix  is invertible. To solve an equation of the
form:

we multiply both sides of the equation by  from

the left, obtaining: 
>

The ‑th entry of the vector  is given by:

>

which is the cofactor expansion along the ‑th column of the matrix
 obtained from  by replacing the ‑th column of  by .

>

Hence, the ‑th entry of the vector  is:

A(adj A) = (adj A)A = (det A)In =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

det A 0 ⋯ ⋯ 0
0 det A 0 ⋯ 0

0 0 ⋱ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
0 0 ⋯ 0 det A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

A det A ≠ 0

A−1 = adj A
1

det A

n × n A

Ax⃗ = ⃗b,

A−1 = adj A
1

det A

x⃗ = (adj A) ⃗b.
1

det A

i (adj A) ⃗b ∈ Rn

((adj A) ⃗b)i =
n

∑
k=1

(adj A)ikbk =
n

∑
k=1

(−1)i+k |Mki| bk,

i

Ai A i A ⃗b

Ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 ⋯ a1(i−1) b1 a1(i+1) ⋯ a1n

a21 a22 ⋮ a2(i−1) b2 a2(i+1) ⋮ a2n

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
an1 an2 ⋯ an(i−1) bn an(i+1) ⋯ ann

⎞⎟⎟⎟⎟⎟⎟⎟⎠

i x⃗ = (adj A) ⃗b
1

det A



This is known as Cramer's Rule.

Example.
Use Cramer's Rule to solve the following linear system:

Solution.
>

This corresponds to the matrix equation:

>

We have:

>

Hence,

xi = .
det Ai

det A

−4x1 + 7x2 + 7x3 = −8
x1 + 6x2 + 3x3 = 5

6x1 + 8x2 − 4x3 = 24

⎛⎜⎝
−4 7 7
1 6 3
6 8 −4

⎞⎟⎠
A

x⃗ =
⎛⎜⎝

−8
5

24

⎞⎟⎠
⃗b

|A1| =
∣
∣
∣
∣

⎛⎜⎝
−8 7 7
5 6 3

24 8 −4

⎞⎟⎠
∣
∣
∣
∣

= 300,

|A2| =
∣
∣
∣
∣

⎛⎜⎝
−4 −8 7
1 5 3
6 24 −4

⎞⎟⎠
∣
∣
∣
∣

= 150,

|A3| =
∣
∣
∣
∣

⎛⎜⎝
−4 7 −8
1 6 5
6 8 24

⎞⎟⎠
∣
∣
∣
∣

= −150.

x1 = = = 2

x2 = = = 1

x3 = = = −1

|A1|

|A|
300
150

|A2|

|A|
150
150

|A3|

|A|
−150
150



Geometry of Vectors
Alternative notation for a vector in :

The norm (or length, magnitude) of a vector
 is:

Note that:

For all ,

Unit Vector
A vector of length  is called a unit vector.

For , the vector  has length:

Definition.

We call  the unit vector associated with .

Rn

⟨v1, v2, … , vn⟩ =

⎛⎜⎜⎜⎜⎝

v1

v2

⋮
vn

⎞⎟⎟⎟⎟⎠

⃗v = ⟨v1, v2, … , vn⟩ ∈ Rn

| ⃗v| =

⎷ n

∑
i=1

v2
i .

| ⃗v| = 0 ⇔ ⃗v = 0⃗.

λ ∈ R

|λ ⃗v| =

⎷ n

∑
i=1

(λvi)2

=

⎷λ2
n

∑
i=1

v2
i

= √λ2

⎷ n

∑
i=1

v2
i

= |λ| | ⃗v|

1

⃗v ≠ 0⃗ ⃗v
1

| ⃗v|

∣
∣
∣

⃗v
∣
∣
∣

= | ⃗v| = 1.
1

| ⃗v|
1

| ⃗v|

⃗v
1

| ⃗v|
⃗v



Intuitively speaking, the unit vector associated with  captures the
direction of , and ignores its length. 
>

Every nonzero vector  has the form:

where  is the unit vector associated with , and  is

the length of .

Dot Product
Definition.
The dot product of two vectors  is:

>

Notice that:

If  is the angle ( ) between two nonzero vectors  and ,

then:

or equivalently,

⃗v

⃗v

⃗v

⃗v = λu⃗, λ > 0,

u⃗ = ⃗v
1

| ⃗v|
⃗v λ = | ⃗v|

⃗v

⃗v, w⃗ ∈ Rn

⃗v ⋅ w⃗ = w⃗ ⋅ ⃗v =
n

∑
i=1

viwi.

(λa⃗) ⋅ ⃗b = λ(a⃗ ⋅ ⃗b), λ ∈ R.

(a⃗ + ⃗b) ⋅ ⃗c = a⃗ ⋅ ⃗c + ⃗b ⋅ ⃗c.

⃗v ⋅ ⃗v =
n

∑
i=1

v2
i

= | ⃗v|2

θ 0 ≤ θ ≤ π ⃗v w⃗

⃗v ⋅ w⃗ = | ⃗v| |w⃗| cos θ,

θ = arccos( ⋅ )⃗v

| ⃗v|

w⃗

|w⃗|


