Week 3

Invertible Matrices
Determinants

Theorem.

Let A be an n X n matrix. The following statements are
equivalent:
1. A is invertible.
2. The matrix equation AZ =0 has # =0 as its only
solution.
3. A is row equivalent to I.

Proof of 1 implying 2
If A-! exists, then:
Z=(A1A)z=A1(Az) = A0 =0.

So, # = 0 is the only solution.

Proof of 2 implying 3

This follows from our previous discussion of Gaussian
elimination on augmented matrices, and the fact that a matrix
in strict triangular form is row equivalent to the identity matrix.

Proof of 3 implying 1

If A is row equivalent to I, then there exists a sequence of
elementary matrices Ey, Es, ..., E; such that:

Ey---E,E A=1.

It is easy to see that every elementary matrix is invertible (
Exercise.). Multiplying from the left both sides of the above
equation with the inverses of the E;'s, we obtain:

A = E;1E271 -..EI;].,

which is a product of invertible matrices. Hence, A4 is
invertible, with inverse A™! = Ej--- E>E;.



Corollary.

Let A be an n x n matrix. If there exists an n x n matrix B
such that either BA or AB is equal I, then A is invertible,
with A~1 = B.

Proof.

>
If BA = I, then for any vector z satisfying Az = 0, we have:

# = (BA)Z = B(Az) = B0 = 0.

Hence, z =0 is the only solution to Az =0, which by the
previous theorem implies that A is invertible. Moreover,
BA = I now implies that:

A'=TA"'=(BA)A'=B(AA™')=BI=B.

If AB = I, then by the same argument as before B is invertible.
We have A= A(BB!)=(AB)B'=B"'. Hence, A is
invertible, with A™! = (B™1)"! = B.

Finding the Inverse of a Matrix

Suppose an n x n matrix A is invertible, then we know from
the theorem that A is row equivalent to I,. In other words,
there exist elementary matrices Ei, E,,...,E; such that
E,---E,E1A=1. Moreover, we have A '=E,.-.--EyF;.
Consider the augmented matrix:

(415

Performing a row operation corresponding to E; on the
augmented matrix, we obtain: >

E(4|L)=(Ba|8)

Performing a row operation corresponding E,; on this new
augmented matrix, we obtain: >

( BEA | BB )

After performing successive row operations corresponding to
the E;'s, we obtain: >



(Ek...EQElA E,---EBE, ):(I‘A_1 )

In other words... >
to find A1, we perform Gaussian elimination on (A|I) until the
left half is reduced to I. Once the left half is reduced to I, the
right half is precisely A=1. If an n x n matrix A cannot be row
reduced to I (i.e. A is row equivalent to a matrix which has a
row whose entries are all zero), then it is not invertible.

Example.

Find the inverse of

-1 3 -3
A=1 0 -6 5 |,
-5 -3 1

if it exists.
We perform Gaussian elimination on the following
augmented matrix:

-1 3 -3|1 0 O
0 -6 5|0 1 0
-5 -3 1 ]0 0 1
We get: >
1.0 0] 3/2 1 —1/2
0 1 0(-25/6 —8/3 5/6
0 01 -5 -3 1

Hence, A is row equivalent to I, which implies that it is
invertible. Moreover,

32 1 —1/2
A7l =| _25/6 —8/3 5/6
-5 -3 1

Useful Fact:

If A= (a 3), and ad — bc # 0, then A is invertible, with:

c
At ! ( d —b).
ad —bc\ —c a




Determinants
For a 1 x 1 matrix A = (a). We define the determinant of A to
be:

det A = a.

Now, let A =(a;;) be an nxn matrix, with n>1. For
i,j€{1,2,...,n}, let M;; denote the (n—1)x (n—1) minor
matrix obtained from A by removing the i-th row and j-th
column of A. The determinant of A is defined recursively as
follows:

>

det A = |A] 1= a(—1)""* det My,
k=

1k—th cofactor

_ 1+n
= a1y |Mu| — arz [Mis| 4 ax3 | M| — - + a1, (—1)""" [ M1, .
* * ce * aik * cee *
ar a2 - G2(k-1) | ¥ | A2(k+1) " G2n
A= : : Sooa3k—1) | ¥ | aG3k+1) ¢ A |
*
an]. o .. e an(kfl) * a’n(kJrl) . .. ann
a1 Q2 -+ G2(p-1) A2(kt1) v G2n
: : S a3(k-1)  A3(k+1 Looas
My, = (k=1) (k+1)
an1 e e a’n(kfl) a’n(kJrl) cee Qpp

The sum defining det A written above is called the cofactor
expansion along the first row.

Theorem.
The determinant det A can be computed using a cofactor
expansion along any row or any column:

n

det A = Z air(—1)"* det My, = Z alj(—l)l+j det M;;
k=1 =1

The resulting values will be the same.




Exercise.

For a 2 x 2 matrix, we have:

det(a b): a b’:ad—bc.
c d c d
Example.
1 2 3
A=| -1 0 5
7 1 =2
0 5 -1 5 -1 0
My, = My = M.
. ( _2), - (7 _2), ’ (7 1)
0 5 5 -1 0
detA=1 -2 = 58.
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Properties of the Determinant

Let A be an n x n matrix.
o det A =det AT,

where AT is the transpose of A, defined by AiTj = Aj;. This
follows from the fact that det A may be computed from
the cofactor expansion along any row or column.

e If A is an upper or lower triangular matrix, then det 4 is
equal to the product of its diagonal entries:

aj;  * * *
0 a9 * *

det = a11a22 P ann
0 0 *

¢ |f one row or one column of A consists entirely of zeroes,
then det A = 0.

1 2 3 -5

det 00 O 0 1_ 0
3 4 -7 9
0 3 1 8




1 2 0 -5

det 6 -7 0 3 |_ 0
3 4 0 9
0 3 0 8

If one row (column) of A is equal to a scalar multiple of
another row (column), then det A = 0.

If a matrix B is obtained from a square matrix A by
switching two rows, then det B = — det A.

The determinant of an elementary matrix is nonzero.

If E is an nxn elementary matrix, then
det(EA) = (det E)(det A).



