
Theorem.
Let  be an  matrix. The following statements are
equivalent:
1.  is invertible.
2. The matrix equation  has  as its only

solution.
3.  is row equivalent to .

Proof of 1 implying 2

If  exists, then:

So,  is the only solution.

Proof of 2 implying 3

This follows from our previous discussion of Gaussian
elimination on augmented matrices, and the fact that a matrix
in strict triangular form is row equivalent to the identity matrix. 

Proof of 3 implying 1

If  is row equivalent to , then there exists a sequence of
elementary matrices  such that:

It is easy to see that every elementary matrix is invertible (
Exercise.). Multiplying from the left both sides of the above
equation with the inverses of the 's, we obtain:

which is a product of invertible matrices. Hence,  is
invertible, with inverse .

Week 3
Invertible Matrices
Determinants

A n × n

A

Ax⃗ = 0⃗ x⃗ = 0⃗

A I

A−1

x⃗ = (A−1A)x⃗ = A−1(Ax⃗) = A−10⃗ = 0⃗.

x⃗ = 0⃗

A I

E1, E2, … , Ek

Ek ⋯ E2E1A = I.

Ei
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2 ⋯ E−1
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,

A

A−1 = Ek ⋯ E2E1



Corollary.
Let  be an  matrix. If there exists an  matrix 
such that either  or  is equal , then  is invertible,
with .

Proof.
>

If , then for any vector  satisfying , we have:

Hence,  is the only solution to , which by the
previous theorem implies that  is invertible. Moreover, 

 now implies that:

If , then by the same argument as before  is invertible.
We have . Hence,  is
invertible, with .

Finding the Inverse of a Matrix
Suppose an  matrix  is invertible, then we know from
the theorem that  is row equivalent to . In other words,
there exist elementary matrices  such that 

. Moreover, we have .

Consider the augmented matrix:

Performing a row operation corresponding to  on the
augmented matrix, we obtain: >

Performing a row operation corresponding  on this new
augmented matrix, we obtain: >

After performing successive row operations corresponding to
the 's, we obtain: >

A n × n n × n B

BA AB I A

A−1 = B

BA = I x⃗ Ax⃗ = 0⃗

x⃗ = (BA)x⃗ = B(Ax⃗) = B0⃗ = 0⃗.

x⃗ = 0⃗ Ax⃗ = 0⃗
A

BA = I

A−1 = IA−1 = (BA)A−1 = B(AA−1) = BI = B.

AB = I B

A = A(BB−1) = (AB)B−1 = B−1 A

A−1 = (B−1)−1 = B

n × n A

A In

E1, E2, … , Ek

Ek ⋯ E2E1A = I A−1 = Ek ⋯ E2E1

( A In )

E1

E1 ( A In ) = ( E1A E1 )

E2

( E2E1A E2E1 )

Ei

( ) ( )



In other words... >
to find , we perform Gaussian elimination on  until the
left half is reduced to . Once the left half is reduced to , the
right half is precisely . If an  matrix  cannot be row
reduced to  (i.e.  is row equivalent to a matrix which has a
row whose entries are all zero), then it is not invertible.

Example.
Find the inverse of

if it exists.
We perform Gaussian elimination on the following
augmented matrix:

We get: >

Hence,  is row equivalent to , which implies that it is
invertible. Moreover,

Useful Fact:
If , and , then  is invertible, with:

Determinants

( Ek ⋯ E2E1A Ek ⋯ E2E1 ) = ( I A−1 )

A−1 (A|I)
I I

A−1 n × n A

I A

A =
⎛⎜⎝

−1 3 −3
0 −6 5

−5 −3 1

⎞⎟⎠ ,

⎛⎜⎜⎝
−1 3 −3 1 0 0
0 −6 5 0 1 0

−5 −3 1 0 0 1

⎞⎟⎟⎠

⎛⎜⎜⎝
1 0 0 3/2 1 −1/2
0 1 0 −25/6 −8/3 5/6
0 0 1 −5 −3 1

⎞⎟⎟⎠
A I

A−1 =
⎛⎜⎝

3/2 1 −1/2
−25/6 −8/3 5/6

−5 −3 1

⎞⎟⎠

A = ( a b

c d
) ad − bc ≠ 0 A

A−1 = ( d −b

−c a
) .

1
ad − bc



Determinants
For a  matrix . We define the determinant of  to
be:

Now, let  be an  matrix, with . For 
, let  denote the  minor

matrix obtained from  by removing the ‑th row and ‑th
column of . The determinant of  is defined recursively as
follows:
>

The sum defining  written above is called the cofactor
expansion along the first row.

Theorem.
The determinant  can be computed using a cofactor
expansion along any row or any column:

The resulting values will be the same.

1 × 1 A = (a) A

det A = a.

A = (aij) n × n n > 1
i, j ∈ {1, 2, … , n} Mij (n − 1) × (n − 1)

A i j

A A

det A = |A| :=
n

∑
k=1

a1k(−1)1+k det M1k
1k−th cofactor

= a11 |M11| − a12 |M12| + a13 |M13| − ⋯ + a1n(−1)1+n |M1n| .

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ⋯ ∗ a1k ∗ ⋯ ∗
a21 a22 ⋯ a2(k−1) ∗ a2(k+1) ⋯ a2n

⋮ ⋮ ⋮ a3(k−1) ∗ a3(k+1) ⋮ a3n

⋮ ⋮ ⋮ ⋮ ∗ ⋮ ⋮ ⋮
an1 ⋯ ⋯ an(k−1) ∗ an(k+1) ⋯ ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

M1k =

⎛⎜⎜⎜⎜⎜⎜⎝

a21 a22 ⋯ a2(k−1) a2(k+1) ⋯ a2n

⋮ ⋮ ⋮ a3(k−1) a3(k+1) ⋮ a3n

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
an1 ⋯ ⋯ an(k−1) an(k+1) ⋯ ann

⎞⎟⎟⎟⎟⎟⎟⎠
det A

det A

det A =
n

∑
k=1

aik(−1)i+k det Mik =
n

∑
l=1

alj(−1)l+j det Mlj



Exercise.
For a  matrix, we have:

Example.

Properties of the Determinant
Let  be an  matrix.

where  is the transpose of , defined by . This

follows from the fact that  may be computed from
the cofactor expansion along any row or column.

If  is an upper or lower triangular matrix, then  is
equal to the product of its diagonal entries:

If one row or one column of  consists entirely of zeroes,
then .

2 × 2

det ( a b

c d
) =

∣
∣
∣
a b

c d

∣
∣
∣

= ad − bc.

A =
⎛⎜⎝

1 2 3
−1 0 5
7 1 −2

⎞⎟⎠
M11 = ( 0 5

1 −2
) , M12 = ( −1 5

7 −2
) , M13 = ( −1 0

7 1
)

det A = 1 ⋅
∣
∣
∣
0 5
1 −2

∣
∣
∣

− 2 ⋅
∣
∣
∣
−1 5
7 −2

∣
∣
∣

+ 3 ⋅
∣
∣
∣
−1 0
7 1

∣
∣
∣

= 58.

A n × n

det A = det A⊤,

A⊤ A A⊤
ij = Aji

det A

A det A

det

⎛⎜⎜⎜⎜⎜⎝

a11 ∗ ∗ ∗
0 a22 ∗ ∗

0 0 ⋱ ∗
0 0 0 ann

⎞⎟⎟⎟⎟⎟⎠
= a11a22 ⋯ ann

A

det A = 0

det

⎛⎜⎜⎜⎝
1 2 3 −5
0 0 0 0
3 4 −7 9
0 3 1 8

⎞⎟⎟⎟⎠
= 0

⎛ ⎞



If one row (column) of  is equal to a scalar multiple of
another row (column), then .

If a matrix  is obtained from a square matrix  by
switching two rows, then .

The determinant of an elementary matrix is nonzero.

If  is an  elementary matrix, then 
.

det

⎛⎜⎜⎜⎝
1 2 0 −5
6 −7 0 3
3 4 0 9
0 3 0 8

⎞⎟⎟⎟⎠
= 0

A

det A = 0

B A

det B = − det A

E n × n

det(EA) = (det E)(det A)


