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Exercise.
If  is an  matrix corresponding to a linear map

, and  is a  matrix corresponding to a linear
map , then the product  is the  matrix
corresponding to the composition of linear maps:

atrix multiplication is associative, namely:

However, in general , even if both products are defined. This
failure of commutativity is unsurprising if one views matrix multiplication in
terms of the composition of linear maps (Why should  be equal to 

? They might not even have the same domain.)
he  matrix , defined by:

is called the identity matrix. Its only nonzero entries are 's along the
diagonal:

It corresponds to the identity map from  to itself, namely,  for all 
. Moreover, for all  matrices  and  matrices , we have:

Systems of Linear Equations
Let  be variables. A system of linear equations in  is a
set of equations of the form:
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C m × n

C : Rn ⟶ Rm D n × l

D : Rl ⟶ Rn CD m × l

C ∘ D : Rl ⟶ Rm.

(AB)C = A(BC).

AB ≠ BA

C ∘ D

D ∘ C

n × n In = I = (Iij)

Iij = { 1  if i = j,
0  if i ≠ j,

1

I =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 ⋯ 0
0 1 0 ⋯ 0

0 0 ⋱ 0
0 0 ⋯ 1

⎞⎟⎟⎟⎟⎟⎠
Rn I ⃗v = ⃗v

⃗v ∈ Rn n × m A m × n B

InA = A, BIn = B.

x1, x2, … xn x1, … , xn

+ + ⋯ + =



where the 's and 's are constants. Solving the above system means
finding all values of  which simultaneously satisfy all the
equations. In the language of matrices, the above system is equivalent to
the following matrix equation:

Hence, solving a system of linear equations is equivalent to solving the
associated matrix equation:

for the vector .

Row Echelon Form
A matrix is said to be in row echelon form if:

1. The first (counting from the left) nonzero entry of each row is .
2. For the first nonzero entry of each row, the entry right below it is zero.
3. The number of leading zeroes (from the left) on each row is greater

than or equal to the number of leading zeros in the row above.

We call the first nonzero entry of a row of a matrix in row echelon form a
pivot. For a matrix in row echelon form, all the entries below a pivot are
zero.

a11x1 + a12x2 + ⋯ + a1nxn = b1

a21x1 + a22x2 + ⋯ + a2nxn = b2

⋮ ⋮ ⋮ = ⋮
am1x1 + am2x2 + ⋯ + amnxn = bm

aij bi

x1, … , xn

⎛⎜⎜⎜⎜⎜⎝

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
am1 am2 ⋯ amn

⎞⎟⎟⎟⎟⎟⎠
A

⎛⎜⎜⎜⎜⎝

x1

x2

⋮
xn

⎞⎟⎟⎟⎟⎠
x⃗

=

⎛⎜⎜⎜⎜⎝

b1

b2

⋮
bm

⎞⎟⎟⎟⎟⎠
⃗b

Ax⃗ = ⃗b

x⃗

1
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Example.
The following matrices are in row echelon form:

The following matrices are not in row echelon form:

f a matrix  is in row echelon form, then a matrix equation of the form 
 is relatively easy to solve.

Example.
Consider the matrix equation

Computing the matrix multiplication on the left-hand side, we have:

We see right away that . Comparing the second row of the
above vector and that of the vector on the right-hand side of the
equation, we have

Since we already know that , we deduce that :

Finally, it follows from the first row that:

Gaussian Elimination

⎛⎜⎝
1 4 2
0 1 3
0 0 1

⎞⎟⎠ ,
⎛⎜⎝

1 2 3
0 0 1
0 0 0

⎞⎟⎠ ,
⎛⎜⎝

1 3 1 0
0 0 1 3
0 0 0 0

⎞⎟⎠ ,

⎛⎜⎜⎜⎝
1 0 2
0 1 −3
0 0 0
0 0 0

⎞⎟⎟⎟⎠

⎛⎜⎝
2 3 4
0 1 5
0 0 1

⎞⎟⎠ ,
⎛⎜⎝

0 0 1 3
0 1 0 1
0 0 1 −5

⎞⎟⎠ , ( 0 1
0 1

)

A

Ax⃗ = ⃗b

⎛⎜⎝
1 4 2
0 1 3
0 0 1

⎞⎟⎠
⎛⎜⎝

x1

x2

x3

⎞⎟⎠ =
⎛⎜⎝

5
−1
7

⎞⎟⎠

⎛⎜⎝
x1 + 4x2 + 2x3

x2 + 3x3

x3

⎞⎟⎠ =
⎛⎜⎝

5
−1
7

⎞⎟⎠ .

x3 = 7

x2 + 3x3 = −1.

x3 = 7

x2 = −1 − 3(7) = −22.

x1 = 5 − 4x2 − 2x3 = 5 − 4(−22) − 2(7) = 79.



Gaussian Elimination
Definition.
Two matrices are said to be row equivalent if one can be obtained
from the other via the following row operations:

I. Interchange two rows.
II. Multiply a row by a nonzero number.
III. Replace a row with its sum with a scalar multiple of another

row.

Fact.
Every matrix is row equivalent to a matrix in row echelon
form.

Augmented Matrix
Given a matrix equation , we define the associated augmented
matrix as follows:

Theorem.

If two augmented matrices  and  are row equivalent,

then  is a solution to  if and only if it is a solution to .
In other words, the systems of linear equations associated with the
two augmented matrices have the same solution set.

Hence, we may solve a matrix equation  as follows:
1. Form the augmented matrix .

2. Perform a sequence of row operations which turn  into a matrix 

 which is in row echelon form.

3. Solve the matrix equation  by examining .

The solutions to  are precisely those to .

Ax⃗ = ⃗b

( A ⃗b ) =

⎛⎜⎜⎜⎜⎜⎝

A11 A12 ⋯ A1n b1

A21 A22 ⋯ A2n b2

⋮ ⋮ ⋱ ⋮ ⋮
Am1 Am2 ⋯ Amn bm

⎞⎟⎟⎟⎟⎟⎠

(A | ⃗b) (A′ | ⃗b
′)

x⃗ Ax⃗ = ⃗b A′x⃗ = ⃗b
′

Ax⃗ = ⃗b

(A | ⃗b)
(A | ⃗b)

(A′ | ⃗b
′)

A′x⃗ = ⃗b
′ (A′| ⃗b

′)
A′x⃗ = ⃗b

′
Ax⃗ = ⃗b



Example.
Solve the matrix equation:

We want to row reduce the following augmented matrix to row
echelon form:

Step 1. Rearranging rows if necessary, make sure that the first nonzero
entry of the first row is no further right than any of the nonzero entries in the
rows below. We call this nonzero entry a pivot. Then, we scale the row
containing the pivot so that the pivot is equal to .

Step 2. Make all entries below the pivot zero by performing row operation
III:

Here, we have added  times the first row to the second row. Once we
have zeroed out the entries below the pivot, we ignore the first row and first
column and apply Steps 1 and 2 to the smaller remaining matrix. Since 

 is nonzero, we may use it as a pivot, and scale the second row by 
:

Then, we add  times the second row to the third row to obtain:

⎛⎜⎝
0 2 1
3 −1 −3
2 3 1

⎞⎟⎠
⎛⎜⎝

x1

x2

x3

⎞⎟⎠ =
⎛⎜⎝

2
−2
7

⎞⎟⎠

⎛⎜⎜⎝
0 2 1 2
3 −1 −3 −2
2 3 1 7

⎞⎟⎟⎠ .

1

⎛⎜⎜⎝
0 2 1 2
3 −1 −3 −2
2 3 1 7

⎞⎟⎟⎠ →
⎛⎜⎜⎝

2 3 1 7
3 −1 −3 −2
0 2 1 2

⎞⎟⎟⎠ →
⎛⎜⎜⎝

1 3/2 1/2 7/2
3 −1 −3 −2
0 2 1 2

⎞⎟⎟⎠

⎛⎜⎜⎝
1 3/2 1/2 7/2

0 −11/2 −9/2 −25/2
0 2 1 2

⎞⎟⎟⎠
−3

−11/2
−2/11

⎛⎜⎜⎝
1 3/2 1/2 7/2

0 1 9/11 25/11
0 2 1 2

⎞⎟⎟⎠
−2

⎛ ⎞



Finally, scaling the third row by , we obtain the following matrix,
which is in row echelon form:

This is the augmented matrix corresponding to the matrix equation:

It can be easily solved: , , 
.

The process of reducing a matrix to row echelon form using row operations
I, II, and III is commonly known as Gaussian Elimination.
In the previous example, the matrix  is row equivalent to a matrix which is
in strict triangular form: It is a matrix in row echelon form such that its last
row contains a single 1 at the right-most position. In this case, any matrix
equation of the form  has a unique solution. But there are matrices in
row echelon form which are not strictly triangular.

Example.
Solve the following system of linear equations:

This is equivalent to solving the matrix equation:

The associated augmented matrix is:

⎛⎜⎜⎝
1 3/2 1/2 7/2

0 1 9/11 25/11

0 0 −7/11 −28/11

⎞⎟⎟⎠
−11/7

⎛⎜⎜⎝
1 3/2 1/2 7/2
0 1 9/11 25/11
0 0 1 4

⎞⎟⎟⎠

⎛⎜⎝
1 3/2 1/2
0 1 9/11
0 0 1

⎞⎟⎠
⎛⎜⎝

x1

x2

x3

⎞⎟⎠ =
⎛⎜⎝

7/2
25/11

4

⎞⎟⎠
x3 = 4 x2 = 25/11 − (9/11)4 = −1

x1 = 7/2 − (3/2)(−1) − (1/2)(4) = 3

A

Ax⃗ = ⃗b

2x + 4y + 2z = 8
−3x − 6y + 2z = −7
−4x − 8y + 6z = −6

⎛⎜⎝
2 4 2

−3 −6 2
−4 −8 6

⎞⎟⎠
⎛⎜⎝

x

y

z

⎞⎟⎠ =
⎛⎜⎝

8
−7
−6

⎞⎟⎠

⎛ ⎞



Which is row equivalent to:

Notice that the entries of the last row are all zero. What does that mean?
Reinterpreting the augmented matrix in terms of a matrix equation, we
have:

This implies that , and , with no further conditions on  and 
 If we introduce a free parameter  and let , we have:

Hence, the system of equations have infinitely many solutions.

Example.
Now, consider the linear system with corresponding augmented
matrix:

This augmented matrix is row equivalent to:

Viewed in terms of the corresponding matrix equation, we have:

⎛⎜⎜⎝
2 4 2 8

−3 −6 2 −7
−4 −8 6 −6

⎞⎟⎟⎠

⎛⎜⎜⎝
1 2 0 3
0 0 1 1
0 0 0 0

⎞⎟⎟⎠

⎛⎜⎝
1 2 0
0 0 1
0 0 0

⎞⎟⎠
⎛⎜⎝

x

y

z

⎞⎟⎠ =
⎛⎜⎝

3
1
0

⎞⎟⎠
z = 1 x + 2y = 3 x

y. t ∈ R y = t

⎛⎜⎝
x

y

z

⎞⎟⎠ =
⎛⎜⎝

3 − 2t

t

1

⎞⎟⎠ =
⎛⎜⎝

3
0
1

⎞⎟⎠ + t
⎛⎜⎝

−2
1
0

⎞⎟⎠ , t ∈ R.

⎛⎜⎜⎝
1 1 1
1 −1 3

−1 2 2

⎞⎟⎟⎠

⎛⎜⎜⎝
1 1 1
0 1 −1
0 0 6

⎞⎟⎟⎠

⎛ 1 1 ⎞ ⎛ 1 ⎞



which stipulates that . We conclude that the linear system has no
solution.
From the previous examples, and considering all possible row echelon
forms, we see that a linear system can either have:

no solution,
a unique solution,
or infinitely many solutions.

You will never encounter a linear system which has, say, exactly 2 solutions.

Invertible Matrices
An  matrix  is said to be invertible if there exists an  matrix 
such that:

where  is the  identity matrix. We call  an inverse of .

Exercise.
If two  matrices  are both inverses of , then .

In other words, if  is invertible, then its inverse is unique. We denote the
inverse of  by .

Exercise.
If ,  are invertible  matrices, then  is invertible, with:

Exercise.
Suppose  is a linear map corresponding to a matrix .
Then,  is invertible (as a map) if and only if  is an invertible matrix.
Moreover, if  is invertible, then  is also linear, corresponding to
the matrix .

Why does Gaussian Elimination Give the

⎛⎜⎝
1 1
0 1
0 0

⎞⎟⎠ ( x1

x2
) =

⎛⎜⎝
1

−1
6

⎞⎟⎠ ,

0 ⋅ x2 = 6

n × n A n × n B

BA = AB = In,

In n × n B A

n × n B, C A B = C

A

A A−1

A B n × n AB

(AB)−1 = B−1A−1.

A : Rn ⟶ Rn A

A A

A A−1

A−1



Why does Gaussian Elimination Give the
Right Solutions?
Elementary Matrices
There are 3 types of elementary matrices.

Type I. This type is obtained by interchanging two rows of an  identity
matrix.

Example.

If  is an elementary matrix obtained from an identity matrix by
interchanging the -th and -th rows, then the multiplication of a
vector by  interchanges the -th and -th entries of the vector:

And since a matrix can be viewed as an array of column vectors, it is easy
to see that multiplication of a matrix by  from the left switches the -th and 
-th rows of the matrix.

Type II An elementary matrix of type II is obtained by multiplying a single
row of the identity matrix by a nonzero scalar.

If  is a obtained from the identity matrix  by multiplying the -th row of 
by , then multiplication of a matrix by  from the left multiplies the -th row
of the matrix by , and leaves all other entries unchanged.

n × n

⎛⎜⎝
0 1 0
1 0 0
0 0 1

⎞⎟⎠ ,

⎛⎜⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠
E

i j

E i j

⎛⎜⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

x1

x4

x3

x2

⎞⎟⎟⎟⎠

E i

j

⎛⎜⎝
1 0 0
0 1 0
0 0 7

⎞⎟⎠ ,

⎛⎜⎜⎜⎝

1 0 0 0
0 −5 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
E I i I

λ E i

λ



Example.

Type III An elementary matrix of type III is obtained from the identity matrix
by adding a scalar multiple of one row to another row:

Example.

If  is obtained from  by adding  times the -th row of  to the -th
row of , then multiplying a matrix  by  from the left adds (  times
the -th row of ) to the ( -th row of ).

Exercise.
A matrix  is row equivalent to a matrix  if and only if there is a
sequence of elementary matrices , such that:

Let  be an  matrix, and . We want to solve the matrix equation 
.

⎛⎜⎝
1 0 0
0 1 0
0 0 7

⎞⎟⎠
⎛⎜⎝

x1

x2

x3

⎞⎟⎠ =
⎛⎜⎝

x1

x2

7x3

⎞⎟⎠

⎛⎜⎝
1 0 6
0 1 0
0 0 1

⎞⎟⎠ ,
⎛⎜⎜⎜⎝

1 0 0 0
0 1 0 −2
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
E I λ i I j

I A E λ

i A j A

⎛⎜⎝
1 0 6
0 1 0
0 0 1

⎞⎟⎠
⎛⎜⎝

1 2
4 5
7 8

⎞⎟⎠ =
⎛⎜⎝

1 + 6(7) 2 + 6(8)
4 5
7 8

⎞⎟⎠

B A

E1, E2, … Ek

B = Ek ⋯ E2E1A

A m × n ⃗b ∈ Rm

Ax⃗ = ⃗b



Exercise.
If  an  invertible matrix, then:  is a solution to:

if and only if it is a solution to:

The idea here is that, if we could find an invertible  such that  is in row
echelon form, then solving  becomes much easier.

Exercise.
For any finite set of elementary matrices , the product 

 is invertible.

Suppose  are elementary matrices such that  is in
row echelon form. Multiplying both sides of the original equation 
with  from the left, we have:

This matrix equation has the same solution set as the original equation
, since  is invertible.

The associated augmented matrix is:

which is precisely the matrix obtained when we perform Gaussian
Elimination on  using the row operations associated with 

.

C m × m x⃗0 ∈ Rn

Ax⃗ = ⃗b

(CA)x⃗ = C ⃗b.

C CA

Ax⃗ = ⃗b

E1, E2, … , Ek

Ek ⋯ E2E1

E1, E2, … Ek Ek ⋯ E2E1A

Ax⃗ = ⃗b

Ek ⋯ E1

Ek ⋯ E2E1Ax⃗ = Ek ⋯ E2E1 ⃗b.

Ax⃗ = ⃗b Ek ⋯ E2E1

(Ek ⋯ E2E1A | Ek ⋯ E2E1 ⃗b) = Ek ⋯ E2E1 (A | ⃗b)

(A | ⃗b)
E1, E2, … , Ek




