Week 13
Multiple Integrals

Double Integrals over More General Regions
Let:

R={(z,y) eR* : a<z<bc(z) <y<d(z)},

where ¢(x), d(x) are continuous functions in . Then:
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where F(z,y) is a function in two variables such that
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8_y = f(z,y).
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Similarly, if:

R={(z,y) eR* : c<y<d,a(y) <z <by)},

where a(y), b(y) are continuous functions in y, then:
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where G(z,y) is a function in two variables such that
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Example.

Evaluate:
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For a bounded closed region R C R?, the area of R is equal to:




//RldA.

(i.,e. the double integral of the constant function f(z,y) =1
over R).

Example.

>
Find the area of region R in R? bounded by the curves
y==z — 1, y = +/z, and the z-axis.

Example.

>
Find the area of region R in R? bounded by the curves y = z
and y = z3.

Triple Integrals

Consider the solid D C R? defined as follows:

a < < b
D={(z,y,2) €eR®: y(z) < <  wlz) 3,
Zl(x’y) S z S ZQ(ZU,’y)

where wyi(z), w2(x) are continuous functions in z, and
z1(z,y), 22(z, y) are continuous functions in (z,y).
>

In other words, the solid is bounded from above by the surface
z = z2(z,y), and from below by the surface z = zi(z,y). Along
the direction parallel to the y-axis, the solid is bounded by the
vertical surfaces y=yi(x) and y = y2(z). Along the direction
parallel to the z-axis, the solid is bounded between the vertical
planes x = a and z = b.

>

The triple integral /// f(z,y,z)dV of a continuous function
D

f(z,y,z) over D is equal to:
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There are solids in R?® defined similarly, but with the conditions
on z,y and z permuted. For example, we can have:

c < y < d
D= (z,y,2) eR® : z(y) < < 2(y)
z1(y,2) < z < z2(y,2)
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Then,
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Example.
Evaluate:
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After a change of order of integration, we have:
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which is equal to:
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The volume of a closed and bounded solid D C R? is equal to:
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Example.

>
Find the volume of:

e The solid in the first octant (z,y,z > 0) of R* bounded
by: the plane z+y+2z=1 and the zy-, zz- and yz-
planes.

Solution.

Evaluate:
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e The solid in R® bounded by: the cylinder y = z?, the
plane z = 3 — y, and the zy-plane.
Solution.

Evaluate:







