
Taylor's Theorem for Functions in Two Variables
Let  be a function in two variables, . Suppose the partial derivatives of  of all
orders up to  exist and are continuous at all points in an open ball  of positive radius
centred at , then for , we have:

where:

and:
>

for some .
The polynomial  is called the ‑th Taylor Polynomial of  about .
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Example.

Let . Approximate the value of  using the second Taylor
Polynomial of  about .
We have:

>

Hence, the second Taylor Polynomial of  about  is:

So,  is approximately equal to .
>

The error of the approximation is:

for some .
>

Computing the 3‑rd order partial derivatives of , we have:

since the sine and cosine functions have absolute values less than or equal to .

Example.

Find the 3rd Taylor polynomial of  at the point .

In general, for a function  in  variables, its ‑th Taylor polynomial at a point 
 is:
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Local Extrema
We say that a function  in two variables has a local minimum (resp. local maximum) at 

 if there exists an open disk  of positive radius, centred at , such that 
 (resp. ) for all .

Definition.

Let  be a function defined on a region  in . We say that an interior point  is a
critical point of  if  is either equal to  or underfined (i.e. one or both of 

,  does not exist.)

Definition.

We say that  has a saddle point at a critical point  if for all open disks  of
positive radius centred at , there exists  such that , and
there exists  such that .

Theorem.

If a function  defined on a region  has a local extremum (i.e. local max or min) at 
, then  is either a critical point of  or a boundary point of .

Second Deriviative Test
Let  be a function in two variables (with continuous second order partial derivatives).
Define:
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Theorem.

(Second Derivative Test) Suppose  is a critical point of , and the first and second
order partial derivatives of  are continuous on an open neighborhood of  (in
particular ). Then:

If :
If , then  has a local minimum at .
If , then  has a local maximum at .

If : 
 has a saddle point at .

If , The second derivative test is inconclusive.

Example.

Let:

Classify the critical points of .

>

which is defined for all .
>

Solving:

We obtain:

>

Hence,

>

Evaluating  at the critical points, we have:

This implies that:

 corresponds to a saddle point,

and that  corresponds to either a local maximum or minimum.
>
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Since, , we conclude that:

 corresponds to a local maximum.

Idea Behind the Second Derivative Test
Let  be the critical point under consideration. By Taylor's Theorem, over a small
neighborhood of ,  is closely approximated by the polynomial:

The polynomial  is of degree , and the graphs of such polynomials fall into 3 categories:
Downward paraboloid. This corresponds to , .
>

Upward paraboloid. This corresponds to , .
>

Hyperbolic paraboloid. This corresponds to .
>
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From the pictures one can see that the three cases correspond to local maximum, minimum,
and saddles points, respectively. 
 

(Illustration by Blacklemon67 ‑ made with mathematica, CC BY‑SA 3.0, Link.)

Multiple Integrals
Double Integrals over Rectangular Regions
Let  be a continuous function on a rectangular region:

>

Partition the interval  into  subintervals of equal length ,

>

and likewise partition  into  subintervals of equal length .

>

Definition.

Given that  is continuous, the double integral  of  over  is the limit as 

 of the double Riemann sum:

where:

>

http://www2.stetson.edu/~wmiles/coursedocs/Fall_05/MS_203/calc3labs/Calculus%20III%20‑
%20Lab%209.htm

Definition.

The integrals:

are called iterated integrals of  over .
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Here,  should be viewed as the integral of a one‑variable function  in , with 

 fixed. In other words:

where  is a function in two variables such that .

>

Hence,

which is an integral of a one‑variable function in .
>

Likewise,

where , and:

>

which is an integral of a one‑variable function in .

Theorem.

(Fubini's Theorem) If  is continuous over , then:

Example.

>
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