Week 11

The Gradient
Taylor's Theorem
The Gradient Vector
Definition.
Let F' be a function in n variables 1, x2, ..., ,. The gradient of F' at
P = (a1,az,...,a,) is the vector:
(Fy,(P), Fy,(P),...,Fy (P)) € R".
Here,
OF
Li (z1,x2,. . -,zn)=(a1,a2,- . -,an)
Theorem. Let F(z;,z,,...,z,) be a function in n variables, P a point on the
level set:

F(:Bl,xQ,...,iL'n) =cC

If the gradient vector VF(P)= (F, (P),F.(P),...,F, (P)) of F at P is

nonzero, then VF(P) is perpendicular to the level set F(z,zs,...,z,) = ¢, in
the sense that it is perpendicular to the tangent vector at P to every smooth
curve on F(zy,z,,...,z,) = ¢ Which passes through P.

In other words:

>

Claim.

If I is an open interval in R, and a differentiable vector-valued function
v : I — R" satisfies:

F(y(t)) =c (i.e. The curve lies on the level set.)
v(to) = P, to € I, (i.e. The curve passes through the point P when t = t¢)

then:

VE(P)-7'(to) = 0.




Proof.

>

Suppose v(t) = (71(¢),72(t), ..., (t)), where ~; is a differentiable real-
valued function in one variable. Applying % to both sides of F(4(¢)) = ¢,
we have:

L) = e

VF(y(t) -'(t) = 0.
——————
Chain Rule

Evaluating the above expression at t = t;, we have:

VF(@) - (to) =0
P

(Note that VF(P) and ~'(ty) are both vectors in R".)

Let F be a function in 3 variables. Let Py = (z¢, yo,0) be a fixed point on the
level surface F(z,y,z) =c (Hence, F(P) =c¢). If VF(FR) is defined and
nonzero, the tangent plane to the surface F(z,y,z) = c at B is defined to be
the plane corresponding to the equation:

Fo(Ro)(z — @) + Fy(Ro)(y — wo) + Fx(Po)(z — 20) = 0,

or more concisely:

—
VF(PO)POPZOa P:(mayaz)'

In particular, n = VF(R) is a normal vector to the tangent plane at P.
>



Example.

For the level surface F(z,y,z2) = 2® + 4y* + 2% = 4, the tangent plane to
the surface at Py = (1/2/2,+/2/2,+/6/2) corresponds to the equation:

V(@ — v/2/2) + 4v2(y — v3/2) + VB(z — v/§/2) = 0.




Example.

Let E be the curve which is the intersection of the surfaces:
2’ +y*—2=0
z+z—4=0

Find a vector parameterization for the line which is tangent to the curve
E at the point Py = (1,1, 3).

Taylor's Theorem for Functions in Two Variables

Let f(z,y) be a function in two variables, n € N. Suppose the partial
derivatives of f of all orders up to n + 1 exist and are continuous at all points

in an open ball B of positive radius centred at (a,b), then for (z,y) € B, we
have:

f(m’ y) = pn(x’y) + +Rn("17’ y),

where:

n k k
mle) =353 (5) a0
~ (@) + L(a )@ — )+ (e b)(y ~ B
+ o (el 0)( — 0)? + 2f2y(0,D)(w — @)y — 8) + fila, D)y~ D))
b 2 (Feae @)@ — @) + Bfruy(a, )@ — @)y~ D)

+3fu(0,0)(w — a) (g — D + Fyn(0, By — D)) -+,

and:




1 LA Sy, +1 ortlf il .
Ry (z,y) = (1) Z ( - ) T (z —a)" I (y — by,
n : J z ) (atc(z—a),b+c(z—b))
for some c € (0,1).
The polynomial p,(z,y) is called the n-th Taylor Polynomial of f(z,y) about

(a,b).




Example.

Let f(z,y) =sinzsiny. Approximate the value of f(0.01,—0.2) using the
second Taylor Polynomial of f about (0,0). We have:

fz(z,y) =coszsiny, f,(z,y) =sinzcosy,
frz(z,y) = —sinzsiny, fyy(z,y) =coszcosy, fy(z,y) =—sinzsiny.

>
Hence, the second Taylor Polynomial of f about (0,0) is:

p(z,y) = £(0,0) + £2(0,0)z + £,(0,0)y
+ % (f22(0, 0)z? + 24, (0,0)zy + £,,(0, 0)y2)

1
:0+0+0+§(0+2.1-my+0):xy.

So, £(0.01,—0.2) is approximately equal to
p(0.01,-0.2) = (0.01)(—0.2) = —0.002.
>

The error of the approximation is:
|£(0.01,—0.2) — p(0.01, —0.2)| = |R5(0.01, —0.2)|
1
=3 (f222(0.01¢, —0.2¢)(0.01)® + 3,4, (0.01¢, —0.2¢)(0.01)*(—0.2)

+3fayy(0.01¢, —0.2¢)(0.01)(—0.2) + f,,,(0.01c, —0.2¢)(—0.2)%) |,

for some c € (0,1).
>

Computing the 3-rd order partial derivatives of f, we have:

|R3(0.01, —0.2)]

= % (— cos(0.01c) sin(—0.2¢)(0.01)* — 3 sin(—0.01c) cos(—0.2¢)(0.01)*(—0.

—3 cos(0.01¢) sin(—0.2¢)(0.01)(—0.2)* — sin(0.01c) cos(—0.2¢)(—0.2)*) |
< % (|0.01|3 +3]0.01[2|—0.2| + 3]0.01| |[—0.2]> + |-0.2]"

since the sine and cosine functions have absolute values less than or
equal to 1.

N———




