
The Gradient Vector
Definition.

Let  be a function in  variables . The gradient of  at 
 is the vector:

Here,

Theorem. Let  be a function in  variables,  a point on the
level set:

If the gradient vector  of  at  is
nonzero, then  is perpendicular to the level set , in
the sense that it is perpendicular to the tangent vector at  to every smooth
curve on  which passes through .
In other words:

>

Claim.

If  is an open interval in , and a differentiable vector‑valued function 
 satisfies:

then:
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γ : I → R
n

F(γ(t)) = c (i.e. The curve lies on the level set.)
γ(t0) = P , t0 ∈ I, (i.e. The curve passes through the point P  when t = t0)

∇F(P) ⋅ γ ′(t0) = 0.



Proof.

>
Suppose , where  is a differentiable real‑
valued function in one variable. Applying  to both sides of ,

we have:

Evaluating the above expression at , we have:

(Note that  and  are both vectors in .)

Let  be a function in  variables. Let  be a fixed point on the
level surface  (Hence, ). If  is defined and
nonzero, the tangent plane to the surface  at  is defined to be
the plane corresponding to the equation:

or more concisely:

In particular,  is a normal vector to the tangent plane at .
>
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Chain Rule

= 0.

d

dt

d

dt

t = t0

∇F(γ(t0)

P

) ⋅ γ ′(t0) = 0

∇F(P) γ ′(t0) R
n

F 3 P0 = (x0, y0,0 )

F(x, y, z) = c F(P0) = c ∇F(P0)

F(x, y, z) = c P0

Fx(P0)(x − x0) + Fy(P0)(y − y0) + Fz(P0)(z − z0) = 0,

∇F(P0) ⋅
−−→
P0P = 0, P = (x, y, z).

n⃗ = ∇F(P0) P0



Example.

For the level surface , the tangent plane to
the surface at  corresponds to the equation:

F(x, y, z) = x2 + 4y2 + z2 = 4

P0 = (√2/2, √2/2, √6/2)

√2(x − √2/2) + 4√2(y − √2/2) + √6(z − √6/2) = 0.



Example.

Let  be the curve which is the intersection of the surfaces:

Find a vector parameterization for the line which is tangent to the curve 
 at the point .

Taylor's Theorem for Functions in Two Variables
Let  be a function in two variables, . Suppose the partial
derivatives of  of all orders up to  exist and are continuous at all points
in an open ball  of positive radius centred at , then for , we
have:

where:

and:
>
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for some .
The polynomial  is called the ‑th Taylor Polynomial of  about 

.
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Example.

Let . Approximate the value of  using the
second Taylor Polynomial of  about . We have:

>
Hence, the second Taylor Polynomial of  about  is:

So,  is approximately equal to 
.

>

The error of the approximation is:

for some .
>

Computing the 3‑rd order partial derivatives of , we have:

since the sine and cosine functions have absolute values less than or
equal to .

f(x, y) = sinx sin y f(0.01, −0.2)

f (0, 0)

fx(x, y) = cosx sin y, fy(x, y) = sinx cos y,

fxx(x, y) = − sinx sin y, fxy(x, y) = cosx cos y, fyy(x, y) = − sinx sin y.
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p(x, y) = f(0, 0) + fx(0, 0)x + fy(0, 0)y

+ (fxx(0, 0)x2 + 2fxy(0, 0)xy + fyy(0, 0)y2)

= 0 + 0 + 0 + (0 + 2 ⋅ 1 ⋅ xy + 0) = xy.
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