
MATH1030 How to express the column space of a matrix as the null space of some matrix.

1. Recall an observation from the handout Homogeneous systems and null spaces:

Suppose we are given an (m× n) matrix B.
To determine N (B) is the same as giving an ‘explicit’ description of the solution set of the homogeneous system
LS(B, 0) through set language, in terms of (hopefully just a few) solutions of the system. That amounts to
finding all solutions of LS(B, 0).

In practice, this is what we proceed with the above:

Suppose B′ is the reduced row-echelon form which is row-equivalent to B.
Suppose the rank of B′ is r. Write k = n− r.
When k = 0, N (B) = {0}.
Suppose k > 0. Then those (few) solutions v1,v2, · · · ,vk of LS(B, 0) needed for expressing all solutions of
LS(B, 0) are ‘read off’ as solutions of LS(B′, 0) for which one free variable takes the value 1 and all other free
variable take the value 0.
In conclusion we have

N (B) = N (B′) = {c1v1 + c2v2 + · · ·+ ckvk | c1, c2, · · · , ck ∈ R} = Span ({v1,v2, · · · ,vk}).

A natural follow-up question is: can this process be reversed? (And in what sense can this be reversed?)

2. Question.
Suppose we are given a collection of vectors u1,u2, · · · ,uq in Rn.
Can we express Span ({u1,u2, · · · ,uq}) as the null space of some appropriate matrix with n columns?
Answer.
The answer is ‘yes’, and will be provided by Theorem (M).
Remark. Hence, the null space of a matrix is the span of some vectors, while the span of several vectors is the null
space of some matrix. The notions of null space, span, column space are manifestations of the same mathematical
concept.

3. Theorem (M).
Let u1,u2, · · · ,uq ∈ Rn, and U = [ u1 u2 · · · uq ].
Denote by U ′ the reduced row-echelon form which is row-equivalent to U . Denote the rank of U ′ by r, and suppose
0 < r < q. Write p = n− r.
Suppose A is a non-singular and invertible (n× n)-matrix which satisfies U ′ = AU .
Denote by A♮ the (p× n)-matrix constituted by the bottom p rows of A.
Then Span ({u1,u2, · · · ,uq}) = C(U) = N

(
A

♮

)
.

Remarks on the statement of Theorem (M).

(a) Theorem (M) is meaningful (and useful) because of the validity of the result (⋆) below from the handout Row
equivalence in terms of multiplication by non-singular and invertible matrices:
(⋆) Let C,D be (n× q)-matrices.

The statements below are logically equivalent:
i. C is row-equivalent to D.
ii. There exists some non-singular and invertible (n× n)-square matrix A such that D = AC.

(b) Theorem (M) is formulated in such a way to avoid the complications in having to cover the ‘extreme cases’
‘r = 0’, ‘r = n’ within the statement.

i. When r = 0, we have U = On×q and C(U) = {0n} = N (In).
ii. When r = n, we have C(U) = C(In) = Rn = N (O1×n).

4. Proof of Theorem (M).
Let u1,u2, · · · ,uq ∈ Rn, and U = [ u1 u2 · · · uq ]. We have Span ({u1,u2, · · · ,uq}) = C(U).
Denote by U ′ the reduced row-echelon form which is row-equivalent to U . Denote the rank of U ′ by r, and suppose
0 < r < q. Write p = n− r.
Suppose A is a non-singular and invertible (n× n)-matrix which satisfies U ′ = AU .
Denote by A

♮
the (p× n)-matrix constituted by the bottom p rows of A.

Denote by A
♯

the (r × n)-matrix constituted by the top r rows of A. So A =

[
A

♯

A
♮

]
.
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Denote by U ′
♯

the (r × q)-matrix constituted by the top r rows of U ′. So U ′ =

[
U ′

♯

Op×q

]
.

We want to verify that C(U) = N (A♮).

• [We verify that every vector in C(U) belongs to N
(
A

♮

)
.

This amounts to verify the statement ‘For any t ∈ Rn, if t ∈ C(U) then t ∈ N
(
A

♮

)
’.]

Pick any t ∈ Rn.
Suppose t ∈ C(U). Then there exists some z ∈ Rq such that t = Uz.

We have
[

U ′
♯
z

0p

]
=

[
U ′

♯
z

Op×qz

]
=

[
U ′

♯

Op×q

]
z = U ′z = AUz = At =

[
A

♯

A
♮

]
t =

[
A

♯
t

A♮t

]
.

Then A
♮
t = 0p.

Therefore t ∈ N (A♮).
• [We verify that every vector in N

(
A

♮

)
belongs to C(U).

This amounts to verify the statement ‘For any t ∈ Rn, if t ∈ N
(
A

♮

)
then t ∈ C(U)’.]

Pick any t ∈ Rn.
Suppose t ∈ N (A♮). Then A

♮
t = 0p.

We have At =
[
A♯
A♮

]
t =

[
A♯t
A♮t

]
=

[
A♯t
0p

]
.

Consider the system LS(U, t). Its augmented matrix representation is [ U t ],
Since A is non-singular, [ U t ] is row-equivalent to the matrix A [ U t ], which is explicitly given by

A [ U t ] = [ U ′ At ] =

[
U ′

♯
A

♯
t

Op×q A
♮
t

]
=

[
U ′

♯
A

♯
t

Op×q 0p

]
,

which is a reduced row-echelon form whose last column is not a pivot column.
Then the system LS(U, t) is consistent. Therefore there exists some z ∈ Rq such that Uz = t.
Hence t ∈ C(U).

It follows that Span ({u1,u2, · · · ,uq}) = C(U) = N
(
A

♮

)
.

5. Theorem (M) suggests an ‘algorithm’ with which we can express the span of some ‘concretely’ given vectors in Rn

explicitly as the null space of a ‘concretely’ determined matrix with n columns.
‘Algorithm’ associated with Theorem (M).
Let u1,u2, · · · ,uq ∈ Rn. We are going to write down a matrix with n columns whose null space is the same as the
span of these vectors.

• Step (0).
If u1 = u2 = · · · = uq = 0n then Span ({u1,u2, · · · ,uq}) = N (In).
From now on assume u1,u2, · · · ,uq are not all zero vectors.

• Step (1).
Form the matrix U = [ u1 u2 · · · un ].
Further form the matrix [ U In ].

• Step (2).
Apply row operations on [ U In ] so as to result in the matrix [ U ′ A ], which is row-equivalent to [ U In ],
and in which U ′ is the reduced row-echelon form row-equivalent to U .

• Step (3).
Inspect the matrix U ′. Denote its rank by r.
∗ Suppose r = n. Then Span (u1,u2, · · · ,uq) = N (O1×n).
∗ Suppose r < n. Write p = n− r. Denote by A

♮
the (p× n)-matrix given by the bottom p rows of A.

Then Span (u1,u2, · · · ,uq) = N
(
A

♮

)
.

6. Illustrations.

(a) Let u1 =

[
1
3
−1

]
, u2 =

[−1
−2
3

]
, u3 =

[
1
1
−5

]
.

We want to express Span ({u1,u2,u3}) as the null space of some appropriate matrix with three columns.
Define U = [ u1 u2 u3 ].
We apply successive row operations starting from [ U I3 ], in such a way to obtain some matrix [ U ′ A ]
in which U ′ is the reduced row-echelon form which is row equivalent to U :
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[ U I3 ] =

[
1 −1 1 1 0 0
3 −2 1 0 1 0
−1 3 −5 0 0 1

]
−→ · · · · · · −→

[
1 0 −1 −2 1 0
0 1 −2 −3 1 0
0 0 0 7 −2 1

]
= [ U ′ A ]

in which U ′ =

[
1 0 −1
0 1 −2
0 0 0

]
, A =

[ −2 1 0
−3 1 0
7 −2 1

]
The rank of U ′ is 2.
Define A

♮
= [ 7 2 −1 ]. We have N

(
A

♮

)
= Span ({u1,u2,u3}).

(b) Let u1 =

[
0
−1
2

]
, u2 =

[
1
−2
7

]
, u3 =

[ −2
3

−12

]
, u4 =

[
1
−4
11

]
.

We want to express Span ({u1,u2,u3,u4}) as the null space of some appropriate matrix with three columns.
Define U = [ u1 u2 u3 u4 ].
We apply successive row operations starting from [ U I3 ], in such a way to obtain some matrix [ U ′ A ]
in which U ′ is the reduced row-echelon form which is row equivalent to U :

[ U I3 ] =

[
0 1 −2 1 1 0 0
−1 −2 3 −4 0 1 0
2 7 −12 11 0 0 1

]
−→ · · · · · · −→

[
1 0 1 2 −2 −1 0
0 1 −2 1 1 0 0
0 0 0 0 −3 2 1

]
= [ U ′ A ]

in which U ′ =

[
1 0 1 2
0 1 −2 1
0 0 0 0

]
, A =

[ −2 −1 0
1 0 0
−3 2 1

]
The rank of U ′ is 2.
Define A

♮
= [ −3 2 1 ]. We have N

(
A

♮

)
= Span ({u1,u2,u3,u4}).

(c) Let u1 =

[
1
1
2

]
, u2 =

[
2
3
6

]
, u3 =

[
2
3
5

]
.

We want to express Span ({u1,u2,u3}) as the null space of some appropriate matrix with three columns.
Define U = [ u1 u2 u3 ].
We apply successive row operations starting from [ U I3 ], in such a way to obtain some matrix [ U ′ A ]
in which U ′ is the reduced row-echelon form which is row equivalent to U :

[ U I3 ] =

[
1 2 2 1 0 0
1 3 3 0 1 0
2 6 5 0 0 1

]
−→ · · · · · · −→

[
1 0 0 3 −2 0
0 1 0 −1 −1 1
0 0 1 0 2 −1

]
= [ U ′ A ]

in which U ′ =

[
1 0 0
0 1 0
0 0 1

]
, A =

[
3 −2 0
−1 −1 1
0 2 −1

]
The rank of U ′ is 3. We have Span ({u1,u2,u3}) = R3 = N (O1×3).

(d) Let u1 =

[
1
1
3
2

]
, u2 =

[
1
0
4
2

]
, u3 =

[
1
−1
4
1

]
, u4 =

[
1
0
3
1

]
.

We want to express Span ({u1,u2,u3,u4}) as the null space of some appropriate matrix with four columns.
Define U = [ u1 u2 u3 u4 ].
We apply successive row operations starting from [ U I4 ], in such a way to obtain some matrix [ U ′ A ]
in which U ′ is the reduced row-echelon form which is row equivalent to U :

[ U I3 ] =

[
1 1 1 1 1 0 0 0
1 0 −1 0 0 1 0 0
3 4 4 3 0 0 1 0
2 2 1 1 0 0 0 1

]
−→ · · · · · · −→

[
1 0 0 1 4 0 −1 0
0 1 0 −1 −7 1 2 0
0 0 1 1 4 −1 −1 0
0 0 0 0 2 −1 −1 1

]
= [ U ′ A ]

in which U ′ =

[
1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0

]
, A =

[
4 0 −1 0
−7 1 2 0
4 −1 −1 0
2 −1 −1 1

]
The rank of U ′ is 3.
Define A

♮
= [ 2 −1 −1 1 ]. We have N

(
A

♮

)
= Span ({u1,u2,u3,u4}).

(e) Let u1 =

[
1
1
3
1

]
, u2 =

[
2
1
2
−1

]
, u3 =

[
7
3
5
−5

]
, u4 =

[
1
1
−1
2

]
, u5 =

[−1
0
9
0

]
.

We want to express Span ({u1,u2,u3,u4,u5}) as the null space of some appropriate matrix with four columns.
Define U = [ u1 u2 u3 u4 u5 ].
We apply successive row operations starting from [ U I4 ], in such a way to obtain some matrix [ U ′ A ]
in which U ′ is the reduced row-echelon form which is row equivalent to U :

[ U I3 ] =

[
1 2 7 1 −1 1 0 0 0
1 1 3 1 0 0 1 0 0
3 2 5 −1 9 0 0 1 0
1 −1 −5 2 0 0 0 0 1

]

−→ · · · · · · −→

[
1 0 −1 0 3 −3 5 0 −1
0 1 4 0 −1 1 −1 0 0
0 0 0 1 −2 2 −3 0 1
0 0 0 0 0 9 −16 1 4

]
= [ U ′ A ]
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in which U ′ =

[
1 0 −1 0 3
0 1 4 0 −1
0 0 0 1 −2
0 0 0 0 0

]
, A =

[ −3 5 0 −1
1 −1 0 0
2 −3 0 1
9 −16 1 4

]
The rank of U ′ is 3.
Define A

♮
= [ 9 −16 1 4 ]. We have N

(
A

♮

)
= Span ({u1,u2,u3,u4,u5}).

(f) Let u1 =

−2
1
1
0
0

, u2 =

 3
−2
0
1
0

, u3 =

 1
−4
0
0
1

.

We want to express Span ({u1,u2,u3}) as the null space of some appropriate matrix with five columns.
Define U = [ u1 u2 u3 ].
We apply successive row operations starting from [ U I5 ], in such a way to obtain some matrix [ U ′ A ]
in which U ′ is the reduced row-echelon form which is row equivalent to U :

[ U I5 ] =

 −2 3 1 1 0 0 0 0
1 −2 −4 0 1 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1

 −→ · · · · · · −→

 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 0 2 −3 −1
0 0 0 0 1 −1 2 4

 = [ U ′ A ]

in which U ′ =

 1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

, A =

 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 2 −3 −1
0 1 −1 2 4


The rank of U ′ is 3.
Define A

♮
=

[
1 0 2 −3 −1
0 1 −1 2 4

]
. We have N

(
A

♮

)
= Span ({u1,u2,u3}).

(g) Let u1 =


−4
1
0
0
0
0
0

, u2 =


−2
0
−1
−2
1
0
0

, u3 =


−1
0
3
6
0
1
0

, u4 =


3
0
−5
−6
0
0
1

.

We want to express Span ({u1,u2,u3,u4,u5}) as the null space of some appropriate matrix with seven columns.
Define U = [ u1 u2 u3 u4 ].
We apply successive row operations starting from [ U I7 ], in such a way to obtain some matrix [ U ′ A ]
in which U ′ is the reduced row-echelon form which is row equivalent to U :

[ U I7 ] =


−4 −2 −1 3 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0
0 −1 3 −5 0 0 1 0 0 0 0
0 −2 6 −6 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 1



−→ · · · · · · −→


1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 4 0 0 2 1 −3
0 0 0 0 0 0 1 0 1 −3 5
0 0 0 0 0 0 0 1 2 −6 6

 = [ U ′ A ]

in which U ′ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

, A =


0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 4 0 0 2 1 −3
0 0 1 0 1 −3 5
0 0 0 1 2 −6 6


The rank of U ′ is 4.

Define A
♮
=

[
1 4 0 0 2 1 −3
0 0 1 0 1 −3 5
0 0 0 1 2 −6 6

]
. We have N

(
A

♮

)
= Span ({u1,u2,u3,u4}).
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