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Problems that may be demonstrated in class :

Q1. By using mean value theorem, show that

| cosx− cos y| ≤ |x− y|

for all x, y ∈ R
Q2. Let a, b ∈ R and f : R → R be a differentiable function such that f ′(x) > 0 for all

x ∈ [a, b]. Show that f is increasing on (a, b) by using mean value theorem.

Q3. Consider the equation cosx = 2x.
(a) Show that the equation has at least 1 solution.
(b) Show that the equation has at most 1 solution.

Q4. Let f : [a, b]→ R\Q be continuous. Prove that f must be a constant function.

Q5. Let f : [0, 1] → (0, 1) be a continuous function. Show that f has a fixed point in
(0, 1). i.e.

∃ c ∈ (0, 1) such that f(c) = c

Q6. (a) Suppose that f : R→ R is continuous on R and that lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

Prove that f is bounded on R and attains either a maximum or minimum on R.
(b) Give an example such that f attains either maximum or minimum, but not
both.

Q7. Find the Taylor polynomial of degree 4 of the following functions at x = 0
(a) ln(1 + x)
(b) (1 + x) ln(1 + x)

Q8. (a) Find the Taylor series of f(x) =
1

1− x

(b) What is the radius of convergence, R?
(c) Is the Taylor series absolutely convergent when x = R and x = −R respectively?

Solution

Q1. Let x, y ∈ R, and f(z) = cos z ∀z. If x = y, the statement clearly holds.

For x 6= y, by mean value theorem, there exists c ∈ (a, b) such that

f ′(c) =
f(x)− f(y)

x− y

Therefore we have

| sin c| =
∣∣∣∣cosx− cos y

x− y

∣∣∣∣
and thus ∣∣∣∣cosx− cos y

x− y

∣∣∣∣ ≤ 1 and | cosx− cos y| ≤ |x− y|

using the fact that | sinx| ≤ 1 ∀x ∈ R
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Q2. Let x, y ∈ (a, b) with x < y. By mean value theorem, there exists c ∈ (x, y) ⊂ (a, b) such
that

f(y)− f(x)

y − x
= f ′(c) > 0

We then obtain
f(y)− f(x) > 0

since y − x > 0. Therefore f is increasing on (a, b)

Q3. (a) Let f(x) = cos(x) − 2x. Note that f(
π

2
) = −π < 0 and f(−π

2
) = π > 0. By

intermediate value theorem, there exists c ∈ (−π
2
,
π

2
) such that

f(c) = 0

(b) Suppose there exists c1, c2 with c1 < c2 such that f(c1) = f(c2) = 0. By mean value

theorem, there exists d ∈ (c1, c2) such that f ′(d) =
f(c1)− f(c2)

c1 − c2
= 0 i.e.

− sin d = 2

which is impossible. Therefore the above equation can have one and only one solution.

Q4. Suppose f is not a constant function. Then there exists c1, c2 ∈ [a, b], with c1 6= c2, such
that f(c1) < f(c2). Note that for any two irrational numbers x, y with x < y, we can
always find c ∈ Q such that x < c < y. Let c ∈ Q such that c ∈ (f(c1), f(c2)). By
intermetidate value theorem, there exists ξ ∈ (c1, c2) such that f(ξ) = c. It is impossible
since c /∈ R\Q

Q5. Let g(x) = f(x)− x for all x ∈ [0, 1]. We have g(1) = f(1)− 1 < 0 and g(0) = f(0) > 0.
By intermediate value theorem, there exists c ∈ (0, 1) such that g(c) = 0. i.e. f(c) = c.

Q6. Assume f is not identically zero (otherwise maximum = minimum = 0). Choose c ∈ R

such that f(c) 6= 0. Since lim
x→±∞

f(x) = 0, there exists N ∈ R such that |f(x)| ≤ |f(c)|
2

for all |x| > N . Note that c ∈ [−N,N ] by construction. Consider the interval [−N,N ].
By extreme value theorem,

∃ α, β such that f(α) ≤ f(x) ≤ f(β) ∀x ∈ [−N,N ]

Since f is bounded on [−N,N ] and also bounded when |x| > N . f is bounded on R.
(i) Supoose f(c) > 0. For all |x| > N we have

f(x) ≤ f(c)

2
≤ f(c) ≤ f(β) (∵ c ∈ [−N,N ])

Hence f(x) ≤ f(β) for all x ∈ R.
(ii) Supoose f(c) < 0. For all |x| > N we have

f(x) ≥ −|f(c)|
2
≥ −|f(c)| = f(c) ≥ f(α) (∵ c ∈ [−N,N ])

Hence f(x) ≥ f(α) for all x ∈ R.
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Q7. (a) Since f(0) = 0, f ′(0) = 1, f ′′(0) = −1, f (3)(0) = 2, f (4)(0) = −6, we then have

T4(x) = x− x2

2
+
x3

3
− x4

4

(b) Let S4(x) be the Taylor polynomial of (1+x) ln(1+x). By (a), let S(x) = (1+x)·T4(x)

S(x) = (1 + x)(x− x2

2
+
x3

3
− x4

4
) = x+

x2

2
− x3

6
+
x4

12
− x5

4

Therefore S4(x) = x+
x2

2
− x3

6
+
x4

12

Q8. (a) Note that f (n)(0) = n!. Therefore

T (x) =

∞∑
n=0

f (n)

n!
xn =

∞∑
n=0

xn

(b) Note that the partial sum is

Sn(x) =
n∑

k=0

xk =
1− xn+1

1− x

First it is easy to see that Sn diverges if |x| > 1. Next, consider the following series:

n∑
k=0

|xk|

For 0 ≤ x < 1,

n∑
k=0

|xk| =
n∑

k=0

xk =
1− xn+1

1− x
→ 1

1− x
as n→∞

For −1 < x < 0, we have 0 < y < 1, where y = −x. Hence

n∑
k=0

|xk| =
n∑

k=0

|(−1)kyk| = 1− yn+1

1− y
→ 1

1 + x
as n→∞

Therefore we can conclude that S(x) is absolutely convergent if |x| < 1 and thus R = 1.
(c) If x = 1, Sn =

∑n
k=0 1, which does not converge. If x = −1, Sn =

∑n
k=0(−1)k, which

is also divergent.
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