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Problems that may be demonstrated in class :
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Given that E 1 2 is convergent, and E 1 - is divergent.
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Q1. Are the following infinite series convergent? Prove it.
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Q2. By using comparison test, prove the following statement: If Zan with a, > 0 is
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convergent, then g ai is convergent.
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Q3. (a) If Zan is absolutely convergent and (b,) is a bounded sequence, show that

n=1
oo
Z anby is absolutely convergent.
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(b) Give an example such that the above statement is false if absolutely convergent
is replaced by convergent.

Q4. Compute the following limits:
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Q5. (a) Let a € R. Show that if lim f(x) exists, then lim [f(x)]? exist.
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(b) Is the converse true? Prove or disprove.
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Solution Q1. (a) Note that \coin| <<= for all n > 1.
n n n
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By comparison test, Z v is convergent.
n=1
(b) Note that L <1f lln>1
— < — for .
ote tha T DmLD = or all n >
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By comparison test, ——  is convergent.
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By comparison test, ——— is divergent.
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(c) Since for all n > 1.

n
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(d) Since nll_{go T # 0, ;
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is divergent.
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(e) Since % > 1Vn > 2, therefore nh_>ngo % # 0 and nz:; & is divergent.

(f) There are two methods.
e Observe that
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Therefore the sequence {s,} is not convergent. Therefore we have Z(—l)" is
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divergent.
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e Since lim (—1)" # 0, therefore Z(—l)" is divergent.
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Q2. Since Z an converges, we have li_>m an = 0, which implies that there exists N such
n o0

Q3.

Q4.
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ap < 1lforalln>N
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By comparison test, we have g ai converge, and so does E ai
n=N n=1
(a) By assumption, we have
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(i) Z |ay| converges
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(ii) There exists M such that |b,| <= M for all n > 1

Note also that |apb,| < Mlay,| for all n > 1 and by comparison test, we have
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Z |anby| converges.
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(b) Consider a,, = ( n) , by = (=1)"
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(c) Note that for any —1 <z <1
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By squeeze theorem, we have lim =1
z—0 X
@ 4 2 5 4 2
Gedr — o2z =Sz (gedr _ o2z
lim ¢ ¢ = lim ¢ *(6e )

T—00 89T — 2T 4 3e—T =300 6—537(86593 — e2r 4 36—1)

Ge T — 67790

B :clggo 8 — e 3% 4 362
=0
(e)
lim 3¢+ Tx+5 o 5 (322 4+ Tz +5)
oy 34+ 7271 4+ 5272
~ oo 5+ 222
3
5



2—(x2+1:)
_ 2 _
wlgngox ¢+ zlbn;om+ o
T
= lim
=00 x4 V12 + x
1
= lim

1

(g) Since —|z| < zsin— < |z| Vo # 0, and lim |z| = lim —|z| = 0, by squeeze
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theorem,

limzsin— =20
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(h) Note that 2° — 1 = (z — 1)(z* + 23 + 2> + 2 + 1)
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Q5. (a) Assume lim = L. Then
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lim £ (2)]? = lim f(2)(x) = lim f(z) lim f(z) = L?
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(b) No. We can disprove by providing a counter-example. Consider the following
function:

1 ifx>0
€Tr) =
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lim [f(z)]* =1 but xlirgl+ flx)=1#—-1= lim f(z)
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