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© Limits
@ Sequences
@ Limits of sequences
@ Squeeze theorem
@ Monotone convergence theorem
@ Limits of functions
@ Limits of functions
@ Exponential, logarithmic and trigonometric functions
@ Continuity of functions

e Differentiation
@ Derivatives
@ Differentiable functions
@ Rules of differentiation
@ Second and higher derivatives
@ Mean value theorem
@ Mean value theorem
@ Application of Differentiation
@ L'Hopital's rule
@ Taylor series
@ Curve sketching
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9 Integration

@ Integration
@ Indefinite integral and substitution
@ Definite integral
@ Fundamental theorem of calculus
@ Techniques of Integration
@ Trigonometric integrals
@ Integration by parts
@ Reduction formula
@ More Techniques of Integration
@ Trigonometric substitution
@ Integration of rational functions
@ t-substitution
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Limits Sequences
Limits of functions
Continuity of functions

Limits of sequences

Definition (Infinite sequence of real numbers)

An infinite sequence of real numbers is defined by a function from the
set of positive integers ZT = {1,2,3,...} to the set of real numbers R.

Example (Arithmetic sequence)

An arithmetic sequence is a sequence a,, such that a,+; —a, =d is a
constant independent of n. The constant d is called the common
difference. The n-th term of the sequence is

an =aj + (n—1)d.

Sequence a; | d an

1,3,5,7,9, ... 1 2] a,=2n-1
—4,-1,2,5,8,... 43| an=38n-17
19,12,5,-2,-9,... | 19 | 7 | an =26 —Tn
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Limits Sequences
Limits of functions
Continuity of functions

Example (Geometric sequence)

A geometric sequence is a sequence a,, such that a,4+1 = ra, for
any n where r is a constant. The constant r is called the common
ratio. The n-th term of the sequence is
an = ayr™ L.
Sequence a | T an
1,2,4,8,16,... 1| 2 an = 201
2 2 1 54
18,6,2, —, —, ... 18| = ==
1D g0 g0 3 n 3n
33 1 (—1)n124
12, — —— ... |12 ] —= =
b 67 37 27 47 2 an 2,n
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Limits Sequences
Limits of functions
Continuity of functions

Example

Let r and d be real numbers. Let a,,, n =0,1,2,---, be a sequence
which satisfies

Gpt1 =7ra, +d, forn > 0.

2 7]
an—aor”+<r )d
r—1

For ag = 1000, r = 1.003, d = —10, we have

Then

n 0 1 2 3 4 5
an | 1000 993 | 985.98 | 978.94 | 971.87 | 964.79
n 24 e 60 e 119 120
an | 826.07 | --- | 540.58 o 0.70 | —9.30
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Limits Sequences
Limits of functions
Continuity of functions

Example (Fibonacci sequence)

The Fibonacci sequence is the sequence F;, which satisfies

Fn+2 = Fn+1 +Fn7 for n > 1
[ =F=1

The first few terms of F;, are
1,1,2,3,5,8,13,21,34,55,89,144, . ...

The value of F}, can be calculated by

R=o <<1 +2¢5)”_ (1 _f)ﬂ)

7/342



Limits Sequences
Limits of functions
Continuity of functions

Definition (Limit of sequence)

© Suppose there exists real number L such that for any € > 0, there
exists N € N such that for any n > N, we have |a,, — L| < e. Then
we say that a,, is convergent, or a,, converges to L, and write

lim a, = L.
n— oo

Otherwise we say that a,, is divergent.

@ Suppose for any M > 0, there exists N € N such that for any
n > N, we have a,, > M. Then we say that a,, tends to +oco as n
tends to infinity, and write

lim a, = +oo.
n—oo

We define a,, tends to —oco in a similar way. Note that a,, is
divergent if it tends to +oo.
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Limits

Sequences
Limits of functions
Continuity of functions

Example (Convergent and divergent sequence)

Sequence Convergent | Limit
2.9,2.99,2.999,2.9999, ... v 3
11 101 1001 10001 ;|2
2172017 2001° 20001 "~ 2

11 11

Ty T E v 0
2,2,2,2,2, ... v 2

1 1
1,0,5,0,5,0,1,... v 0
1,0,1,0,1,0,... X —
1,11,111,1111, 11111, ... X +00
1,-3,5,-7,9,... X —
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Limits Sequences
Limits of functions
Continuity of functions

Example (Intuitive meaning of limits of infinite sequences)

an, First few terms Limit
1 11 1
— 1,-,—,—,... 0
n? 4’9716’
n 123 4 1
n+1 2737475
(=)~ | 1,-1,1,-1,... does not exist
2n 2,4,6,8,... does not exist/ + oo
1\" 9 64 625
1+ — 2, - —,—, ... ~ 2.71828
( +n> "4’ 27 2567 ‘
Fri1 35 1++5
—_— 1,2, —,—,... ~ 1.61803
Fn ) ’2’3’
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Limits Sequences
Limits of functions
Continuity of functions

Definition (Monotonic sequence)

@ We say that a,, is monotonic increasing (decreasing) if for
any m < n, we have a,, < a, (am > a,). We say that a, is
monotonic if a,, is either monotonic increasing or monotonic
decreasing.

@ We say that a, is strictly increasing (decreasing) if for any
m < n, we have a,, < ap, (am > ay).

Definition (Bounded sequence)

We say that a,, is bounded if there exists real number M such
that |a,| < M for any n € N.
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Limits Sequences
Limits of functions
Continuity of functions

Example (Monotonicity and boundedness)

Sequence Monotonic | Strictly monotonic | Bounded
3,3,3,3,3, ... v x v
1,1,2,2,3,3,4,4, ... v x x
7,—2,7,—2,7,—2, ... X X v
2.7,2.77,2.777,2.7777, ... v v v
1,0,2,0,3,0,4,0,... X X X
—1,-2,-3,—4, ... v v x
0.001, 0.002, 0.003, 0.004, ... v v X
1 1 1
1000,?,?,?,... v v v

12 /342



Limits Sequences
Limits of functions
Continuity of functions

Example (Bounded and monotonic sequence)

an, Terms Bounded | Monotonic Con\'/er'gent
(Limit)
1 11 1
ﬁ ]-7 17 §a T6a ‘/ ‘/ ‘/ (0)
-1 143
1-— 2, —, =, — 1
n 727 37 47 / x \/ ( )
n? 1,4,9,16,... X v X
1—-(=1)" 2,0,2,0,... X X
(=1)"n —-1,2,-3,4,... X X X
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Limits Sequences
Limits of functions
Continuity of functions

If a,, is convergent, then a, is bounded.

Convergent = Bounded

Note that the converse of the above statement is not correct.
Bounded # Convergent

The following theorem is very important and we will discuss it in
details later.

Theorem (Monotone convergence theorem)

If a,, is bounded and monotonic, then a, is convergent.

Bounded and Monotonic = Convergent
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

Suppose lim a,, = a and lim b, = b. Then
n—0o0 n—oo

lim (a, £b,) =a=+b.

n—o0

Answer: T
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

Suppose lim a,, = a and c is a real number. Then
n—o0

lim ca, = ca.
n—o0

Answer: T
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

If im a,, = a and lim b, = b, then
n—oo n—oo

lim a,b, = ab.
n—oo

Answer: T
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

If im a,, = a and lim b, = b, then
n—oo n—oo

Answer: F
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

If lim a, = a and lim b, = b # 0, then
n—oo n—oo

Answer: T
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)
If im a,, = 0, then
n—00

lim a,b, = 0.
n—0o0

Answer: F

1
For a,, = — and b,, = n, we have lim a, = 0 but
n n—00

1
hmanbn—hmf n= lim 1=1%#0.
n—oo n—oo N n—oo
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

If lim a, = 0 and b, is convergent, then

n—o0
lim a,b, = 0.
n—r0o0
Answer: T
lim a,b, = lim a, lim b,
n—oo n—oo n—oo
= 0
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

If lim a, = 0 and b,, is bounded, then

n—00

lim a,b, = 0.
n—0o0

Answer: T
Caution! The previous proof does not work.

22 /342



Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

If a,, and b,, are divergent, then a,, + b, is divergent.

Answer: F

The sequences a,, = n and b, = —n are divergent but a,, + b, =0
converges to 0.
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

If lim b,, = 4+o00, then

n—o0

n—oo n

Answer: F

For a,, = n? and b,, = n, we have lim b, = +00 but
n—od

2

an N -
— = — =n is divergent.
by, n
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

If a,, is bounded and lim b, = oo, then
n—o0

Answer: T
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

Suppose a,, and b,, are convergent sequences such that a,, < b, for
any n. Then

lim a, < lim b,.
n—,oo n—oo

Answer: F

Example

|

The sequences a,, = 0 and b, = — satisfy a,, < b,, for any n.
n
However
lim a, £ lim b,
n—oo n—oo

because both of them are 0.
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

Suppose a,, and b,, are convergent sequences such that a,, < b, for
any n. Then

lim a, < lim b,.
n—,oo n—oo

Answer: T
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

If a,, is convergent, then

Jgrrgo(an+1 —ay) =0.

Answer: T
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

If lim (ap+1 — an) =0, then a, is convergent.
n—o0

Answer: F

Let a, = +/n. Then lim (an4+1 — a,) = 0 and a,, is divergent.
n—oo
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Limits Sequences
Limits of functions
Continuity of functions

Exercise (True or False)

If lim (ap4+1 — an) = 0 and a,, is bounded, then a, is convergent.
n—oo

Answer: F
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Limits Sequences
Limits of functions
Continuity of functions

Let a,, b, be two sequences such that lim a, = a, lim b, =b
n—oo n—oo

and c be a real number. Then
Q@ lim (a,£b,) =axd
n—oo

Q@ lim ca, = ca

n—oo
© lim a,b, = ab
n—oo
an
O lim 3t = ifb#0.
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Limits Sequences
Limits of functions
Continuity of functions

Let a,, be a sequence such that lim a,, = a. Then
n—oo
@ for any positive integer k, lim a, i = a.
n—o0

(2] nh_{glo(an—l-l - an) =0
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Limits Sequences
Limits of functions
Continuity of functions

Let a be a real number.

0, if —1l<a<l1
lim a" = ¢ 1, ifa=1
n—oo

does not exist, ifa<—1lora>1
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Limits Sequences
Limits of functions
Continuity of functions

Let @ # 0 and r # 1 be real numbers. Let

sn=a+ar+ar’+---+ar™ L

Then

a(l —r™
S (1—7“)

and

1 —pn
lim s, = lim u
n—00 n—oo 1 —1r

a if —1l<r<l1

= {1-7
does not exist, otherwise
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Limits Sequences
Limits of functions
Continuity of functions

2n —5 P — 9
lim i = lim 711
n—oo 3n + 1 n—>oo3_|_g
_2-0
3+0
2
= < |
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Limits

Sequences
Limits of functions
Continuity of functions

3 2 7
-2 7 1—-5%5+ 5
hmw - lim — 0% n®
n—00 4n3+5n2—3 n—oo 4 i_%
n n

_ 1

4
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Limits Sequences
Limits of functions
Continuity of functions

3n —V4n? +1 3 Y4n+l

a0 T WEIDT TS B e

nhm F 5] nhm ; =
n

3—4/4+ 5
= lim —V—"
n—>oo3_|_ /9+#

1
6
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Limits Sequences
Limits of functions
Continuity of functions

lim (n — vVn? —4n+1)

(n—vn2—4dn+1)(n+ vn? —4n + 1)

n—oo n++vn?—4n+1
n? — (n? —4n +1)

= 1
n0o n+vn?—4n+1
I 4dn — 1

= lim
n—oop 4+ /n? —4n + 1
: 4-1

= lim -
n—oo

1+4/1-44 L

n

= 2
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Limits Sequences
Limits of functions
Continuity of functions

In(n* +1) _ In(n*(1+ 7))
lim ———* = lim ———— %
n—oo In(nd + 1) n—oo In(n3(1 + J5))
Innt + ln(l +-4)
im
n—oo Inn3 4+ In(1 + %)
. 4lnn+In(1+ - =)
novoo 3107 +1In(1+ - 1

ln(1+n4)
Inn

44+
= lim

n—o0 111(1+T713)

3+

Inn
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Limits Sequences
Limits of functions
Continuity of functions

Squeeze theorem

Theorem (Squeeze theorem)

Suppose a,, by, ¢, are sequences such that a, < b, < ¢, for any n

and lim a, = lim ¢, = L. Then b,, is convergent and
n—o0o n—o0

lim b, = L.

n—o0
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Limits Sequences
Limits of functions
Continuity of functions

Theorem

If a,, is bounded and lim b, = 0, then lim a,b, = 0.
n—oo n—oo

Proof.

Since a,, is bounded, there exists M such that —M < a,, < M for any n.
Thus

| \

—M|by| < anbp, < M|by,|

for any n. Now

lim (—M|b,[) = lim M|b,| = 0.

n—r oo

Therefore by squeeze theorem, we have

lim a,b, = 0.
n—oo

Ol
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Limits Sequences
Limits of functions
Continuity of functions

Vit (1)
w30 Vi — (—1)"

Find lim

Solution

Since (—1)" is bounded and lim — =0, we have

n—00 \/>
lim ) = 0 and therefore
n—o00 \/ﬁ

_1)n 1+ 5
fin \/EJFE B = Jim —%
n—oo /N — (—1)" n—oo 1 _ &

1 NG
=1
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Limits Sequences
Limits of functions
Continuity of functions

n

Show that lim 4—' = 0.

n—oo Nl

Proof.
Observe that for any n > 4,

4" 43 (4 4 4 4 4 43 4 128
0 —=—|[—--=-—=+-- fgi.fzi
n! 3! 5 6 n—1/)n 3!

4 n 3n
. 128
and lim — = 0. By squeeze theorem, we have
n—o00 3N
471,
lim — =0
n—oo n!

Ol
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Limits

Sequences
Limits of functions
Continuity of functions

1 1

1

Let a, =

n3+12 n3+22

n3 + 32

. Find lim a,.
n— oo

Tt e

Solution

Observe that for any n,

n 1 n 1 n 1 n 1 n
nd3+n2 ~ nd412  nd3422  nd 432 n3+n2 =~ nd4+1
and
. n . 1
L B N
1
lim = =0.

n— 00 n3+1

By squeeze theorem, we have

1m
n—oo p2 + L
n

lim L + 1
nooo \ N3 4L 12 n3 s 922

tmt

1 1

v
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Limits Sequences
Limits of functions
Continuity of functions

Monotone convergence theorem

Theorem (Monotone convergence theorem)

If a,, is bounded and monotonic, then a, is convergent.

Bounded and Monotonic = Convergent
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Limits Sequences
Limits of functions
Continuity of functions

Example

Let a,, be the sequence defined by the recursive relation

{anH =+va,+1forn>1

Find lim a,,.
n—oo

Qnp
1
1.414213562
1.553773974
1.598053182
1.611847754
10 | 1.618016542
15 | 1.618033940

G W N3
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Limits Sequences
Limits of functions
Continuity of functions

Suppose lim a,, = a. Then
n—oo

lim apy1 = lim Va, +1
n—oo n—o0o
a = va+1
o> = a+1
a>—a—-1 = 0
1+v5 1-+6
a = 5 or 5

It is obvious that a > 0. Therefore

1++5

5 1.6180339887

a =
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Limits Sequences
Limits of functions
Continuity of functions

Solution

The above solution is not complete. The solution is valid only after

we have proved that lim a, exists and is positive. This can be
n—oo

done by using monotone convergence theorem. We are going to
show that a,, is bounded and monotonic.

Boundedness

We prove that 1 < a,, < 2 for alln > 1 by induction.

(Base case) Whenn =1, we havea; =1 and 1 < a1 < 2.
(Induction step) Assume that 1 < aj, < 2. Then

g1 = Vap+1>v/14+1>1
apy1 = Vap+1<vV2+1<2

Thus 1 < a, < 2 for any n > 1 which implies that a,, is bounded.
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Limits Sequences
Limits of functions
Continuity of functions

Solution

Monotonicity: We prove that a,,+1 > a, for any n > 1 by induction.
(Base case) Whenn =1, a; = 1, ag = /2 and thus ay > a.
(Induction step) Assume that

ax+1 > ay, (Induction hypothesis).

Then

Apro = \/ak+1 +1 > Va + 1 (by induction hypothesis)

Qk+1

This completes the induction step and thus a., is strictly increasing.
We have proved that a,, is bounded and strictly increasing. Therefore a.,
is convergent by monotone convergence theorem. Since a,, > 1 for any

n, we have lim a, > 1 is positive.
n— oo

1+5

This completes that proof that lim a, =
n—00 2
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Limits Sequences
Limits of functions

Continuity of functions

Example
Let a,, be a sequence defined by

=2a, —a?, forn>1
1
ay = —

2

An+1

1. Prove that a,, < 1 for any positive integer n.

2. Prove that a,, is monotonic increasing.

3. Find lim a,,.
n— oo )
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Limits Sequences
Limits of functions
Continuity of functions

1. Observe that a; = § < 1 and for any n > 2, we have
Un =20n_1 —0a2_; = —(an_1 — 1) +1< 1.

Therefore a,, < 1 for any positive integer n.
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Limits Sequences
Limits of functions
Continuity of functions

2. We prove that a,,+1 — a, > 0 for any n by induction on n.
(Base case) When n =1, as — a; = 3 — 2 > 0. (Induction step)
Assume that ax4+1 — aix > 0. Then

Appa — app1 = (20541 — af4) — (205 — a)
= 2(ar1 —ax) — (a4, —ap)
= 2(ak+1 — ar) — (@k41 + ar)(aps+1 — ax)
= (2 (ak+1 + ax))(ak+1 — ax)
Since ag, ax+1 <1 by (1) and a1 — ax, > 0 by induction

hypothesis, we have agi2 — ax+1 > 0. This completes the induction
step and we conclude that a,, is monotonic increasing.
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Limits Sequences
Limits of functions

Continuity of functions

Solution

3. Since a,, <1 is bounded and a,, is monotonic increasing, a., is

convergent by monotone convergence theorem. Let lim a, = a.

n—oo
Then
nh_)rgo pt1 = nli_)n;O(Qan —a?)
a = 2a—ad?
a?—a = 0
ala—1) = 0
a = 1lor0

Since a, > a1 = % for any n, we have a > % > 0. Therefore a =1

and we proved that lim a, = 1.
n—oo
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Fn+1 g . an .
Let a, = where F, is the Fibonacci's sequence defined by
Fn+2 :Fn+1+Fn
FL=F=1
Find lim a,.
n— oo
n an
1 1
2 2
3 1.5
4 | 1.666666666
5 1.6
10 | 1.618181818
15 | 1.618032787
20 | 1.618033999
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Theorem

For any n > 1,
0 FnioFn — Fr%+1 = (*1)n+1
e FnJrSFn - Fn+2Fn+1 = (71)n+1

v

When n = 1, we have F3F; —F2=2-1-12=1=(—1)2. Assume
2

FoyoFy — F2q = (—1)FHL
Then

Fry3Fpi1 — F;§+2 = (Frt2+ Frt1)Fr1 — F;?+2
= Fipo(Frp1 — Frgo) + F2 4
= —FpoFu+ F2,
= (=1)**2 (by induction hypothesis)

n

Therefore Fy,12Fy, — F27L1 = (=)t for anyn > 1.

V.
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Proof

The proof for the second statement is basically the same. When
n=1, we have FyF] — F3F; =3-1—-2-1=1=(—1)2. Assume

Fio3F — Frp2Fyp = (=1)FHL
Then

FyyaFyoy1 — FeysFrio = (Fras + Fry2)Frrr — FraFigo
= Fp3(Feq1 — Fryo) + FrqoFrya
= —Fpi3Fk + FrioFpp
= —(=1)**! (by induction hypothesis)
= (D

Therefore F, 3F,, — FpyoFn1 = (=1)"! for any n > 1. O
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Limits Sequences
Limits of functions
Continuity of functions

Fn+1

Let a, =
n

© The sequence a1,as,as,ar,- -, is strictly increasing.

@ The sequence as, ay,ag,as, - - -, is strictly decreasing.

| A

Proof.
For any £ > 1, we have

Fopt2 For  FopqoFop—1 — Fopr1Fox

A2k+1 — A2k—1 = — =
Fopy1 Fopa Fopy1Fop1
(_1)2k 1
Fori1Fop—1 Fopp1For
Therefore a1, as,as,ar,-- -, is strictly increasing. The second statement
can be proved in a similar way. O

<
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Continuity of functions

lim (aggt1 — agk) =0
k—o0

For any k > 1,
Forio  Fopp
s F2k11 - ng
_ IopqaFo — 1 . 1
Eopp1Fop Fop 1 Fog
Therefore
i — = lim ——— =0.
kggo(a2k+1 a2k) kggo F2k+1F2k

O
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5 Fn+1 1+ \/5
lim =
n—oo [, 2

| \

Proof
Fn+1

First we prove that a,, = 7 Is convergent.
ay, is bounded. (1 < a,, <2 for any n.)
agk+1 and agy are convergent. (They are bounded and monotonic.)

lim (aggr1 — agk) = 0= lim agxy; = lim agy
k—o00 k—oc0 k—o0

It follows that a,, is convergent and

lim a, = lim agg1 = lim aoy.
n—00 k—o0 k—00
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F,
To evaluate the limit, suppose lim L — L. Then
n—oo [,

£, B, By, . Il 1
L= lim -2 & iy SmEln <1+ )_1+
I2-L-1=0

By solving the quadratic equation, we have

_1+vh 1-V5
2 2

L

We must have L > 1 since a,, > 1 for any n. Therefore

1
L= +2\/S.

O

v
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Limits Sequences
Limits of functions
Continuity of functions

The limit can be calculated directly using the formula

an_ﬁn
-8

(5 (4)

1+f 1-+5
A=

are the roots of the quadrat/c equation

F, =

where

2 —r—1=0.
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Continuity of functions

Let
1 n
a, = <1+>
n
"1 1
= — =141 =
bn dog=1lt1l+g +3,+ o=
k=0
Then

Q a, <b, foranyn > 1.

Q a, and b, are convergent and

lim a, = lim b,
n— o0 n— o0
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Limits Sequences
Limits of functions
Continuity of functions

(1)

a, =
"1 1
b, = ZE—1+1+ gt
k=0
n (07 bn
1 2 2

2.48832 | 2.716666666666
10 2.593742 | 2.718281801146
100 2.704813 | 2.718281828459
100000 | 2.718268 | 2.718281828459

The limit of the two sequences is the important Euler's number
e ~ 2.71828 18284 59045 23536. . . .

which is also known as the Napier's constant.
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Limits Sequences
Limits of functions

Continuity of functions

Definition (Convergence of infinite series)

We say that an infinite series

Zak=a1+a2—|—a3+--.
k=1

is convergent if the sequence of partial sums
n
Sn =Y, ap =aj1 +az+as+---+ay, is convergent. If the infinite series

k=1
is convergent, then we define

o0 n

E ar = lim s, = lim g a.
n—oo n—oo

k=1 k=1
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Limits of functions
Continuity of functions

Limits of functions

Definition (Function)

A real valued function on a subset D C R is a real value f(z)
assigned to each of the values z € D. The set D is called the
domain of the function.

Given an expression f(z) in x, the domain D is understood to be
taken as the set of all real numbers z such that f(z) is defined.
This is called the maximum domain of definition of f(x).

Definition (Graph of function)

Let f(x) is a real valued function. The graph of f(z) is the set

{(z,y) eR* 1y = f(2)}.
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Limits of functions

Continuity of functions

Definition

Let f(x) be a real valued function and D be its domain. We say
that f(z) is
@ injective if for any x1, 29 € D with 21 # x5, we have
f(x1) # f(x2).

@ surjective if for any real number y € R, there exists € D
such that f(x) = y.

© bijective if f(x) is both injective and surjective.

Definition

Let f(x) be a real valued function. We say that f(z) is
Q even if f(—x) = f(x) for any z.
Q odd if f(—z) = —f(x) for any z.

66 / 342
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Limits of functions

Continuity of functions

f(z) Domain Injective | Surjective | Bijective | Even | Odd
2x — 3 R v v v X X
x3 — 222 R X v X X X
1
— x#0 v X X X v
@
4
Qix“ R X X X X v
i
2m T S X v X X v
2 —
1
x2 — = x#0 X v X v X
Vi—2%2 | —2<x<2 X X X v X
1
z>—4 v X X X X
va+4
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Limits of functions

Continuity of functions

s
. 3
s
y=2r-3 2
p
.
.
T I I S N B
) T 7 3 3 3
2
a
-
. 2
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Limits of functions

Continuity of functions

f 4
4 1
1
' 3
3 '
'
J o : 2_ 1
: y=v-2
1 ' v 1 x
1
'
o ? 2 3 4 s 6 3 2 o 2 3 4 5 6
1
1 H .
1
) '
g '
H 2
'
3 !
| -3
|
3
— 2
y=v4—=x
.
5
-2 - o 1 2 3
-1
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Limits Sequences
Limits of functions

Continuity of functions

Definition (Limit of function)

Let f(z) be a real valued function.

© We say that a real number [ is a limit of f(z) at z = a if for any € > 0,
there exists § > 0 such that

if 0 <|z—al <9, then |f(z) —I| <e

and write
lim f(z) =1

r—ra
@ We say that a real number [ is a limit of f(z) at +oo if for any € > 0,
there exists R > 0 such that
if £ > R, then |f(z) — 1] <€

and write
lim f(z) =1

x—+o0o

The limit of f(z) at —oo is defined similarly.
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Limits Sequences
Limits of functions

Continuity of functions

@ Note that for the limit of f(x) at x = a to exist, f(z) may
not be defined at = a and even if f(a) is defined, the value
of f(a) does not affect the value of ligl f(zx).

@ The limit of f(x) at x = a may not exist. However the limit is
unique if it exists.
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Limits Sequences

Limits of functions

Continuity of functions

lim f(z) =1

T—a

K
<

I

-

&
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Limits Sequences

Limits of functions
Continuity of functions

lim f(x)

r—a
does not exist
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Limits Sequences
Limits of functions
Continuity of functions

Theorem (Sequential criterion for limits of functions)

Let f(z) be a real valued function. Then

lim f(z) =1

r—a

if and only if for any sequence x.,, of real numbers with lim x, = a, we

n—oo

have
lim f(z,)=1.

n—o0
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Limits Sequences
Limits of functions

Continuity of functions

Theorem
Let f(x), g(x) be functions such that li_1>n f(z)
r—a

¢ be a real number. Then
O lim(f(2) +¢(x)) = lim f(z) + lim g(z)
@ lim cf(a) = c lim f(2)
O lim f(x)g(z) = lim f(x) lim g(z)
lim f(z)
Q lim 1) _ oo (:I; if lim g(z) # 0.

w50 g(@) T gz) e

, lim g(x) exist and
T—ra
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Limits of functions

Continuity of functions

Theorem (Squeeze theorem)
Let f(x),g(x), h(z) be real valued functions. Suppose

Q f(z) < g(x) < h(z) for any z # a on a neighborhood of a, and
© lin /(+) = lim (o) = 1.

Then the limit of g(x) at x = a exists and lim g(z) = [.
r—a

| \

Theorem
Suppose
Q f(z) is bounded, and

Q limg(z) =0
xr—ra

Then lim f(z)g(z) = 0.

r—a
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Limits of functions
Continuity of functions

Exponential, logarithmic and trigonometric functions

Definition (Exponential function)

The exponential function is defined for real number z € R by
e’ = lim <1 + E)n
n—00 n
z2 oz zt
= 1+$+§+§+E+“‘

© It can be proved that the two limits in the definition exist and
converge to the same value for any real number z.

@ ¢” is just a notation for the exponential function. One should
not interpret it as ‘e to the power z'.
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Limits Sequences
Limits of functions
Continuity of functions

For any z,y € R, we have

TV = e%el,

Caution! One cannot use law of indices to prove the above identity.
It is because e€* is just a notation for the exponential function and
it does not mean ‘e to the power x’. In fact we have not defined
what a® means when z is a real number which is not rational.
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Limits of functions

Continuity of functions

Theorem

@ ¢c® > 0 for any real number x.

@ ¢ is strictly increasing.

@ Foranyz >0, wehavee® >1+x>1. If z <0, then

T —x _ ex+(—m) _ 60 -1
= 1
e*(l)

®
I

>0

since ¢~* > 1. Therefore e > 0 for any = € R.

@ Let z,y be real numbers with z < y. Then y — x > 0 which implies
e’~" > 1. Therefore

V= T — Tl s o7

O
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Limits of functions

Continuity of functions
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Limits Sequences
Limits of functions
Continuity of functions

Definition (Logarithmic function)

The logarithmic function is the function In : R™ — R defined for
x > 0 by
y=Inzxif e =z.

In other words, In z is the inverse function of e*.

It can be proved that for any > 0, there exists unique real
number y such that e¥ = z.
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Limits of functions
Continuity of functions

O nzy=Inz+Iny
o n < =Ilnz—1Iny
Yy

© Inz™ =nlnzx for any integer n € 7.

Proof.
QO Letu=Inz and v =1Iny. Then z =%, y = e” and we have

Ty = ele?l — equv _ elnerlny

which means Inzy = Inx + Iny.

Other parts can be proved similarly. O
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Limits Sequences
Limits of functions

Continuity of functions

7
7
7
y=e" ¢
4 Y
7
7
d
7
P y=Inx

2

-2 o
7
Y
Y
7/
/7

/7
7 -2
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Limits Sequences
Limits of functions

Continuity of functions

Definition (Cosine and sine functions)

The cosine and sine functions are defined for real number z € R
by the infinite series

S a:2 1'4 .’176
CoOsSr = _?—i_ﬂ a"ﬁ‘
. . 333 1'5 :I?7
snro= rogrtyTwt

© When the sine and cosine are interpreted as trigonometric
ratios, the angles are measured in radian. (180° = 7)

@ The series for cosine and sine are convergent for any real
number z € R.
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Limits of functions

Continuity of functions

, |
|
|

Yy =sinzx I
/‘ Yy = cosx, |
I
™ ™ 3 127
2 2 [
|

1 |
|
I

2 |
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Limits Sequences
Limits of functions

Continuity of functions

There are four more trigonometric functions namely tangent, cotangent,
secant and cosecant functions. All of them are defined in terms of sine
and cosine.

Definition (Trigonometric functions)

i 2k +1

tanz = Smm,forx;é + m, keZ
cos T

cotx = C_Oﬂ, forx £km, keZ
sin
1 k+1

secx = ——, forx # + m, kel
cos T
1

cscx = ——, forx#km, k€
sin
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Limits Sequences
Limits of functions

Continuity of functions

Theorem (Trigonometric identities)

o
o

cos?z +sin2z=1; sec?z—tan?z=1; csc?z—cot?z=1
cos(x £ y) = cosx cosy F sin z sin y;
sin(z & y) = sinx cos y £ cos z sin y;
tan x &+ tan

tan(zx £ y) = e
1 Ftanxtany
cos2x = cos?x —sin®x = 2cos?x — 1 = 1 — 2sin? x;
sin 2x = 2sinx cos x;

2tanz
tan2x = ———
1—tan?zx
2cosz cosy = cos(z + y) + cos(z — y)
2coszsiny = sin(z + y) — sin(z — y)
2sinzsiny = cos(z — y) — cos(z + y)

o (33
“22)on (52)

cosx + cosy = 2 cos (%) 0S
z+y

/\

cosx — cosy = —2sin

Y
—9 z+y T—y
sinz + siny = 2sin 5 ) cos 5
— +Y )\ g z—y
sinx — siny = 2 cos ( > ) sin ( —5
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Limits of functions

Continuity of functions

Definition (Hyperbolic function)

The hyperbolic functions are defined for z € R by

. 7 em+e_x71+x2+x4+x6+
coshx = 5 o1 o
et —e * a3 :B5 x’

sinhx = —5 _x—|——3' +7_|_77' 4.
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Limits of functions

Continuity of functions

3
y = coshx

2

e’ .

y="73 y = sinhz

3 2 1 1 2
1
2
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Limits Sequences

Limits of functions
Continuity of functions

Theorem (Hyperbolic identities)

Q cosh’z—sinh?z =1

@ cosh(z + y) = coshx coshy + sinh z sinh y
sinh(x 4 y) = sinh  cosh y + cosh x sinh y

© cosh2z = cosh?z + sinh? x = 2cosh®? z — 1 = 1 + 2sinh? 2;
sinh 2x = 2 sinh x cosh x
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r—1
Q lim< - —
z—0 x
o lim In(1+ z)
z—0 x
o lim sinz 1

z—0 X

1

=1

Limits

Sequences
Limits of functions

Continuity of functions
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Limits of functions
Continuity of functions

Proof. lim €

x—0
For any —1 < = < 1 with = # 0, we have
e’ —1 = 1+£+£+£+ﬁ+...
T N 2l 31 4l B!
2) 2 2 2
7 0 a a x
< 14+ = T4 4T 4 ) =14+
< + 5 + < 1 + 8 + 6 + ) + o) + 5
et -1 _ 1+£+ﬁ+i+...
@ B 2l = 3 4l
2 2 2 2
% a a a x
> 142 (a2 4T 4 ) =142 o
= 1Ty (4+8+16+ ) T2
and li (1+§+£2)_1, (1+£_£2)_1 Therefore li ew_l—l O

v
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Continuity of functions

Figure: lim A |
x—0 x
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Limits of functions
Continuity of functions

Proof. lim

x—0

Let y = In(1 + z). Then

In(14+2)
z B

and z — 0 as y — 0. We have

g 2AF2) Y
z—0 €T y—0e¥ — 1
=

Note that the first part implies lim (e — 1) = 0.
y—0
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Limits of functions
Continuity of functions

Proof. lim ELE 1.
xz—0 X
Note that
snr_ ot 2t ot a0
z 315 79 11!

For any —1 < = < 1 with = # 0, we have

inz _ (2 a (a0 2\
T 3! 5! 7! 9!

sinz — 1,&24, Zj,‘lj + ﬁ,wflo +...>17£2
zr 6 50 7! 9 11! = 6
22
and lim 1 = lim (1 — =) = 1. Therefore
x—0 x—0 6
lim 2% = 1.
x—0 X
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Continuity of functions

3
2
y=1
sinx
y =
T
4 3 2 1 o0 1 2 3 4
-1
22
y=1-—
-2
. . sinx
Figure: lim =1
z—0 X
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Continuity of functions

Let k be a positive integer.

k
Q@ lim = =0
z—+oo e%
(In x)k

Q@ lim =0

T—+00 X
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Continuity of functions

Proof.
@ Forany z >0,

22 3 2R+l
T =1 i N e —
RN TIR TH (k + 1)!
and thus .
k+1)!
0 < xf < g
ed an
k+1)!
Moreover lim u = 0. Therefore
T—r+00o T
k
lim — = 0.

x——+oco eT

@ Let z=¢Y. Then z — +00 as y — +oco and Inz = y. We have

. (Inz)* . yk
lim = 1
z—+o0 x y—+oo eY
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Limits of functions

1.

. z2-16
lim

z—4 Jr — 2

3e2® 4 % — g

T —e ¢ T
z—+o00 4e2¢ — 5eT 4 2zt

In(2e® + 23)
1m —_—
z—+o0 In(3e2% 4 4z5)

lim (z+ Va2 —2z)
Tr—r—00

Continuity of functions

i @ D@+ DT+2)

st (V- 2)(/E 1)

o @ — )@+ (WE+2)

r—4 r—4

Jim (2 + 4)(v/7 +2) = 32
3+e* —gle 2= 3

im = -
z—4o0 4 — 5e~T 4 2zte—2T 4
4z + In(2 + 23e4®)
im
z—+00 2z + In(3 + 4ade—2%)
s 1n(2+x3674”")

li _— =2
ZJTOO 24 1n(3+4x°e*2$)
)

(z + V2 — 2z)(x — V22 — 2z)

lim

T——00 ) x—Vz? — 2z
lim — o

T — 0017\/93272x
lim

x—>ool+\/7
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Continuity of functions

5.

. sin 6z — sinx
lim

z—0 sin4x — sin 3z

3 1 —cosx
lim ———
z—0 xtanzx

. 621 —1
lim ——
z—0 In(1 + 3z)

lim & In(1 + sin )

z—0 1 —4/cosx

6sin6x _ sinz

lim 62 =__9-1_5
z-—0 4sindz _ 3sin3z 4—3
4x 3z

lim (1 —cosz)(1 + cosx)

Z£—0 sin
222 (1 + cosz)

. (1 —cos?z)cosx
lim ————
z—0 zsinz(1 4 cos x)

. sin x COS T 1
lim — ==
:t—>0( x )l+cosx 2

e —1 3z _
z—0 3 2 In(1+3z)
(1 + y/cosx)(1 + cosz) In(1 + sinz)

2
3

lim
20 1 —cos?x
In(1 i
lim .x . w(l + v/cosz)(1 + cosz)
z—0 sin T sin
4
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Continuity of functions

Theorem

Let g(u) be a function of u and u = f(x) be a function of x.
Suppose

o ilgaf(x) =b € [—o00, +]
2] l1¢1£>1f%fq(u) =1
© f(x)#b whenx # a org(b) =1.
Then
lim (g o f)(z) = .

Tr—a
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Continuity of functions

et . 4 3z er’ 1
1. im —— = lim - -
z—0 x2 sin 3z z—0 3 \ sin 3z 43

i () =)

—

(=]
<

. In(1+2tanz) . 2 sinx In(1 + 2tanx)
2. lim ———— = lim
2—0 T z—0 \ COS X x 2tanx

= 21im(@) (y = 2tanz)
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Limits of functions

Continuity of functions

Definition (Continuity)
Let f(z) be a real valued function. We say that f(x) is continuous at
x =a if

lim f(x) = f(a).

T—ra

In other words, f(z) is continuous at z = a if for any € > 0, there exists
6 > 0 such that

if |x —a| <4, then |f(z) — f(a)| <e.

We say that f(x) is continuous on an interval in R if f(z) is continuous
at every point on the interval.
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Continuity of functions

Let g(u) be a function in v and w = f(x) be a function in x.
Suppose g(u) is continuous and the limit of f(x) at x = a exists.
Then

lim (g o f)(x) = lim g(f(z)) = g (1im /(2)).

r—a T—ra Tr—ra
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@ For any non-negative integer n, f(x) = x™ is continuous on R.
@ The functions e*, cos x,sin x are continuous on R.

© The logarithmic function Inx is continuous on R™.
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Continuity of functions

Suppose f(x), g(x) are continuous functions and c is a real
number. Then the following functions are continuous.

Q f(z)+g(z)

Q cf(x)

Q f(z)g(z)
f(=)

° g9(z)

Q (fog)(z)

at the points where g(z) # 0.
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Continuity of functions

Definition

The absolute value of x € R is defined by
—z, ifx<0
|z = )
7z, ifz>0
’ y = |z|
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Limits of functions
Continuity of functions

Example (Piecewise defined function)

° 22+2, ifz<1
a y=f(z)= ve—-1l,ifl<z<5b
’ 1, ifz=25

3/ T—z, ifz>5

a 1 )
lim f(z) 3 2
T—a
lim f(x) 0 2
z—at
lim f(x) | does not exist | 2
T—a
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Continuity of functions

—r—1,ifr<—1
r+1, if —1<x<0

=|lz| = 1| =
y =zl =1] —r+1,if0<z<1
rz—1, ifz>1
3 2 1 0 1 2 3 4 5 6
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Limits of functions
Continuity of functions

A function f(x) is continuous at x = a if

lim f(z) = lim f(z) = f(a).

z—at T—a—

The theorem is usually used to check whether a piecewise defined
function is continuous.
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Limits of functions
Continuity of functions

The following functions are not continuous at = a.

y=fx)
\ a
\% a
lim f(z) does not exist lim f(x) does not exist
/
y=f(x)
lm f(x) # lim_f(x) lim f(2) # f(a)
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Limits of functions

Continuity of functions

Example

Given that the function

2r—1 ifz<?2
f(@)=1<a if =2
22+b ifzx>2

is continuous at x = 2. Find the value of a and b.

Note that
lim f(z) = lim 2z—1)=3
T2 T—2—
lim f(z) = lim (z®+b)=4+0b
z—2t z—2t
f@) = a
Since f(x) is continuous at x = 2, we have 3 =4 + b = a which implies a = 3
and b= —1.
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Continuity of functions

Prove that the function

is not continuous at z = 0.

Let z, = m forn=1,2,3,.... Then nl;ngomn =0 and
2 1
fen) =sin (EEUT) — -1y,

Thus lim f(z,) does not exist. Therefore f(x) is not continuous at
n—oo

xz = 0. ]
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Limits of functions
Continuity of functions

0.1 . v 0.15 02 025 03

15

f(z) is not continuous at z = 0.
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Theorem (Intermediate value theorem)

Suppose f(x) is a function which is continuous on [a,b]. Then for
any real number n between f(a) and f(b), there exists £ € (a,b)
such that f(§) = n.

(0, £(b))

/[ S E

I e

s I
P Er——
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Theorem (Extreme value theorem)

Suppose f(x) is a function which is continuous on a closed and
bounded interval [a,b]. Then there exists o, 3 € [a, b] such that

fla) < f(z) < f(B) for any z € [a, b].

1(8) (b, £(b))
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

Differentiable functions

Definition (Differentiable function)
Let f(x) be a function. Denote

Fa) — tn Ha 1) = S @)

h—0 h

and we say that f(z) is differentiable at x = a if the above limit
exists. We say that f(x) is differentiable on (a,b) if f(z) is
differentiable at every point in (a,b).

The above limit can also be written as

) =t L) @)

T—a Tr—a
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

(a+h,fla+h))

h) —
slope of tangent = }im M

1—0

a \airh

Figure: Definition of derivative
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

slope of tangent at x =21is —1
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Theorem

If f(x) differentiable at x = a, then f(x) is continuous at x = a.

Differentiable at + = a = Continuous at z = a

Proof.
Suppose f(z) is differentiable at = a. Then

lim (M) (z— a)

lim (f(z) — f(a))

T—a z—a Tr—a
= lim (M) lim (z — a)
T—a Tr—a T—a
= f'(a)-0=0
Therefore f(z) is continuous at = = a. O

Note that the converse of the above theorem does not hold. The function
f(x) = |z| is continuous but not differentiable at 0.
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

The following functions are not differentiable at = = a.
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

, . h _ 0 . eh—l
— pT. 3 —
O fla)=em F0) = jim ——=lim—— =1
In(14+h)—Inl In(1 + h)
— 5 / — —
Q f(z) =z f'(1) = lim I == 1
. - smhfsinoi smhi
O o) =simas JO) =gy = =
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

4r — 1, ifx <1

9 . is differentiable at z = 1.
ar® +bx, ifz>1

Find the values of a,b if f(z) = {

Solution: Since f(z) is differentiable at z = 1, f(z) is continuous at z = 1 and we
have
lim f(z) = f(1) = lim (az®4+bzx)=a+b=3.
z—1t

z—1t

Moreover, f(z) is differentiable at = 1 and we have

FOL+R) = f(1) @1+h)—1)—3 _

lim ———M————= = lim 4
h—0— h h—0— h
14+h)—fQ1 14+h)2 —b(1+h)—
T (G 1) Bt €O R PR € )l U ) Bk P
h—o0+ h h—0+t h
Therefore atb=3 = a=1
2a+b=4 b=

123 /342



Derivatives
Differentiation Mean value theorem

Application of Differentiation

Definition (First derivative)

Let y = f(x) be a differentiable function on (a,b). The first
derivative of f(z) is the function on (a,b) defined by

dy . . .. fl@+h)—f(z)
2~ @)=l h '

Theorem

Let f(x) and g(x) be differentiable functions and c be a real
number. Then

Q@ (f+9)(z) = f(x)+d(x)
Q@ (cf)'(z) = cf'(x)
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

d

QO —z"=nz"1,neZt forxr eR
dx

Q@ ¢ =¢"forzeR
dx
d 1

Q@ —lnx=—forxz>0
dx T

Q@ —cosx=—sinz forz € R
dx

@ —sinz=-cosx forx € R
dx
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Derivatives
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Let y = x™. For any x € R, we have
dy _ (z+h)" -z
T
— lim (CL’ + h— $)(($ a4 h)n*1 u (.CL' & h)nfzx ot xﬂ*l)
h—0 h
= lim((z + h)n—l +(z+ h)"_2:n 4ot mn—l)
h—0
= na" !

Note that the above proof is valid only when n € Z* is a positive
integer.
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(Alternative proof)
de  dx 20 3 4l

2t 3z?  42°
= 04+14+—=4+—+—4+--

21 3 T4l
1 1'2 1'3
= l+at+or+o+o

x
= €

In general, differentiation cannot be applied term by term to infinite series. The
second proof is valid only after we prove that this can be done to power series.
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d 1
(— Inz = 7) Let f(z) =Inz. For any z > 0, we have
z

_ In(1+2
@: lim In(z + h) lnx: lim ( x) :l.
dx h—0 h h—0 h aB

d
(— cosz = —sin x) Let f(x) = cosx. For any x € R, we have

dx
—2sin (z + %) sin (%)

dy . cos(z+ h) —cosz
— = lim

= lim = —sinzx.
dx  h—0 h h—0 h
d . .
T sinz = cosz | Let f(xz) =sinz. For any z € R, we have
x
B\ ain (B
dy . sin(z + h) —sinz | L <x+ 5) sim (5)
— = lim ———— = lim = coszx.

dr  h—0 h h—0 h
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Let a > 0 be a positive real number. For x € R, we define

av zlna
a =e€ B

v
Theorem

Let a > 0 be a positive real number. We have

Q oY =a%aY forany x,y € R

Q iaz =a"Ina.

0 az+y _ e(z+y)lna _ ezlnaeylna — a®a¥
d d

e gt = — zlna :ezlnalna:azlna
dx dx
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Let f(x) = |z| for z € R. Show that f(x) is not differentiable at x = 0.

Observe that
fW-f0) _ . —h_
hli%lf h B hlggf h !
f -0 _ _
hlgg+ h hlirgh h !
Thus the limit .
o £ = £(0)
h—0 h
does not exist. Therefore f(x) is not differentiable at = = 0. O
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Figure: f(x) = |z| is not differentiable at z = 0
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Exercise (True or False)

Suppose f(z) is bounded and is differentiable on (a,b). Then

© f/(x) is differentiable on (a,b).
Answer: F

@ f'(x) is continuous on (a,b).
Answer: F

© f'(x) is bounded on (a,b).
Answer: F
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Let f(z) = |z|z for z € R. Find f'(x).

Solution: When z < 0, f(z) = —2? and f'(z) = —2z. When = > 0,
f(z) = 2% and f'(z) = 2. When 2 = 0, we have

im W =S _yp [WR =0y |h| =0
h—0 h h—0 h h—0
Th "(0) = 0. Theref
us f'(0) erefore Cor, iz <0
fl(x) = 0, ifx=0
2z, ifz >0

2|z|.

Note that f'(x) = 2|z| is continuous at z = 0.

133 /342



Derivatives
Differentiation Mean value theorem

Application of Differentiation

f(x) = 2|z

@ f(z) is differentiable at 2 = 0. (f(x) is differentiable on R.)
o f
o f

x) is continuous on R.

—~~

x) is not differentiable at x = 0.
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Let

.1 .
Fz) = zsin —, if o #£0

0, fz=0

@ Find f'(z) for x # 0.

@ Determine whether f(z) is differentiable at = 0.

”

1. When x # 0,
f'(x) =sin = — 1 cos 1
® 7
2. We have L
_ hsin L
lim f(r) = £(0) = lim el lim sin —
h—0 h h—0 h h—0

does not exist. Therefore f(x) is not differentiable at x = 0.
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Fla) = sin (%) — Jl_cos (%) yifx#0

undefined, ifax=0

e f(z) is not differentiable at z = 0.
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Let

O Find f'(2).

@ Determine whether f/(z) is continuous at z = 0.

1. When x # 0, we have

1 1 1 1 1
f'(z) = 2z sin = + 22 <—2 cos ) = 2zsin — — cos —.
7 7 i 7 7

A\
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2. When x = 0, we have
oy — e S = FO) L REsing 1
£1(0) = fim == -y i LS

Since %irr%)h =0 and |sin 1| < 1 is bounded, we have f'(0) = 0. Therefore
—

1 1
2xsin — —cos —, ifx#0
@ s

f(@) = far0
0, ifx=0

Observe that
lim f'(z) = lim (235 S l)
z—0 az

z—0 T

does not exist. We conclude that f'(z) is not continuous at x = 0.
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@ f'(0) =0 (f(x) is differentiable on R)

@ f’(z) is not continuous at x = 0
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o f/(0) =0 (f(x) is differentiable on R)
@ f/(x) is not continuous at z =0

@ f’(x) is not bounded near x =0
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f(z)is f(z) is f'(z) is
f(x) continuous differentiable continuous
atz =0 atz =0 atz =0
|z| Yes No Not applicable
||z Yes Yes Yes
z sin <1) f(0)=0 Yes No Not applicable
x
2. (1
z¥sin | = ); f(0)=0 Yes Yes No
03
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Application of Differentiation

Example
The following diagram shows the relations between the existence of limit,
continuity and differentiability of a function at a point a. (Examples in the
bracket is for a = 0.)
Second differentiable (f(z) = SH;I; f(0)=1)
I
Continuously differentiable (f(z) = |z|z)
4
Differentiable (f(x) = x?sin(z~1); £(0) = 0)
4
Continuous (f(z) = |z|)
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Rules of differentiation

Theorem (Basic formulas for differentiation)

d
— " =na 1

dx

d d
—ef =¢eF —Inzx = —

dx dx

d .
—sinxz = cosx — CcoSx = —sinx
dz dx

— tanz = sec x — cotz = —csc2x
dx dx

—secx =secrtanr ——cscx = —cscxcotx
dx dx

d ) .

— coshz = sinh z — sinhz = cosh z
dx dzx
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Theorem (Product rule and quotient rule)

Let uw and v be differentiable functions of x. Then

d dv du
—uv = U— +v—
dx dx dx
du _ v -ug

dr v v

v

Let u = f(x) and v = g(z).

d i J@ 9@+ h) — f(@)g(x)
dx h—0 h
. (flet+h)g(z+h)—flz+h)g(z)  [flz+h)g(z)— f(=)g(z)
- }11310 ( h + h )
fl@+h)— f(r))
h

= fm, (sGe-+0)

dv " du
= u— +v—
dx dx
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Application of Differentiation

f(z+h) _ f(=)
T g(z+h) g(x)

h—0 h
i £+ W(@) — F@)gle+ 1)
h—0 hg(z)g(z + h)

hg(x)g(x + h) hg(x)g(x + h)

h—0

h—0 hg(x)g(x + h) hg(x)g(x + h)
v —ugy
e

lim <g(x) SEr D= ) f(z)- gl@+h) —g(x)

i (Lt gle)=fote) _ faltot )= felote)

)

)
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Theorem (Chain rule)

Let y = f(u) be a function of u and uw = g(x) be a function of x.
Suppose g(x) is differentiable at x = a and f(u) is differentiation at
u=g(a). Then fog(x) = f(g(x)) is differentiable at x = a and

(fo9)(a) = f'(9(a))g'(a).

In other words,
dy dy du

dr  du dx’
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Application of Differentiation

(fo9)(a)
o Jat ) — f(g@)
h—0 h
_ oy f@t ) — g(@) | glat k)~ g(a)
h—0  g(a+h)—gla) hr—0 h
o FO@ B~ fe(@) | glath) — g(a)
k—0 k h—0 h
(Note that g(a + h) — g(a) =k — 0 as h — 0 because g(x) is continuous.)

= f'(9(a))g’(a)

The above proof is valid only if g(a + k) — g(a) # 0 whenever h is sufficiently close to
0. This is true when g’(a) # 0 because of the following proposition.

Proposition

Suppose g(x) is a function such that g’(a) # 0. Then there exists 6 > 0 such that if
0 < |h| < 6, then
gla+h) —g(a) #0.
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When ¢'(a) = 0, we need another proposition.

Proposition

Suppose f(u) is a function which is differentiable at w = b. Then there exists
0 >0 and M > 0 such that

|f(b+h) — £(b)| < M|h| for any || < 6.

The proof of chain rule when g’(a) = 0 goes as follows. There exists § > 0
such that

[f(gla+h)) — f(g(a))| < M|g(a+ h) — g(a)| for any |h| < 6.

Therefore
im [L8(a 1) = Flg(@) | oy lolath) —gla)] _ g
h—0 h h—0 h

which implies (f o g)'(a) = 0.
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The chain rule is used in the following way. Suppose u is a
differentiable function of . Then
d . . 1 du
L = nut o
d L du
dz© - Y
d 1du
—lhu = ——
T u dx
_ . du
gp Cosu = —sinu—
. du
7 Sy = cosu——
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1. i sin® z = 3sin29vi sinz = 3sin? z cos z
dx dx e
d - d ev®
2. —eV® = VFl p=
dz® c d:cﬁ 2z
3 i ! = - 2 i Inx = —72
" dzx (Inx)? - (Inzx)3 dz ~ z(lnz)3
d 1 2sin 2%
4., —1 2 = _sin2z) -2 = — — _9tan?
gy ncos2z cos?x( sin 2x) T tan 2z

ot

d 1
.—tan\/1+x2 = secQ\/1+x2-7-2x:7
dx 2¢/1 + 2 V1 + 22

d 1
. —sec®v/sinz = 3sec® V/sinz(sec V/sinz tan v/sinz) ——— - cosx

dx 24/sin x
3sec® v/sin x tan v/sin z cos z
2v/sinx

(o)
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Differentiation Mean value theorem

d .
7. — cos* zsinz

dx

i sec 2x

“dx In

10. sin (

xT

Inz

V14 22

)

Application of Differentiation

cos? z cos & + 4 cos® 2(— sinz) sin
cos® x — 4 cos® xsin®

In (2 sec 2z tan 2z) — sec 2x()

(Inz)?
sec2z(2z tan 2z lnx — 1)
z(ln x)?
tana <xsec2w — tanm)
e s |[———
>

)

/ 2(1) _ 2
s () (e
14+ 22 1+ 22

1+ 22 —2°lnz cos( Inx )
w(1+x2)% V14 22
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Definition (Implicit functions)

An implicit function is an equation of the form F(z,y) = 0. An implicit function may
not define a function. Sometimes it defines a function when the domain and range are
specified.

| N

Theorem

Let F(z,y) = 0 be an implicit function. Then

OF OFdy _

ox + Biy de
and we have
OF
Y _ _ o
- OF *
dzx By

Here %—5 is called the partial derivative of F' with respect to x which is the derivative
of F' with respect to x while considering y as constant. Similarly the partial derivative

%—5 is the derivative of F' with respect to y while considering x as constant.
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Application of Differentiation

Example

|

Find d—y for the following implicit functions.
i

Q 2?2 —2y—2y°=0
@ cos(ze¥) +z?tany = 1

| A\

Solution
L2w—(y+ay)— (¥ +2oyy) = 0
ay +2ayy = 2w —y-—y?
2
y = 2r—y—y
T + 2xy
2. —sin(ze¥)(e¥ + zeVy') + 2z tany + x2sec?yy’ = 0
z?sec? yy' — ze¥sin(ze¥)y’ = eYsin(ze¥) — 2z tany

y = e¥ sin(ze¥) — 2z tany

z2 sec? y — we¥ sin(zeY)

4
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Differentiation

Theorem
function y = f~1(x) of f(y) is differentiable and
1

=iy )= —————.
U@ = mimy

Suppose f(y) is a differentiable function with f'(y) # O for any y. Then the inverse

In other words,
Yy

I
8
I
Il | ‘
A

Proof.
FF =) @
FU @)Y (@ = 1
—1y\/ o _ 1
R = wre)
O
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Q Forsin™:[-1,1] — [—g, g],

@ Forcos':[-1,1] = [0, 7],

1
—CoS T = ———.
d m
© Fortan ! :R — fg,g],
—tan " x = !
d 14 22
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dy
o= 9
cosy -
dy 1
dz ~  cosy
1
= ——— (Note: cosy > 0 for _r <y< E)
1 —sin%y 2 2
. 1
V1—22
The other parts can be proved similarly. O
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Find dy if y=2a”.
dz

Solution

There are 2 methods.
Method 1. Note that y = 2® = e*'"®. Thus

d
ﬁ =e"""(1+1nz) = 2"(1 +Inz).

Method 2. Taking logarithm on both sides, we have

Iny = zlnzx
1dy = 1+nz
y dx
% = y(l+Inx)
= z(1+Inz)

v
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Let u and v be functions of 2. Show that

/ —1 !
—u’ =u'v Inu+u’ ou.

dx
We have
iuv _ i vinu
dx T dx

!
= evln“(vllnu+v-l)
U
v( ’ 'U’UI)
u (v Inu+ —
U

/ —1 !
= uvInu+u’ Tvu

O

v
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Second and higher derivatives

Definition (Second and higher derivatives)

Let y = f(z) be a function. The second derivative of f(z) is the function

dy_ d (dy

de? ~ dx \dx )’
The second derivative of y = f(z) is also denoted as f”(z) or y”. Let n be a
non-negative integer. The n-th derivative of y = f(z) is defined inductively by

dny d dnfly

-—= = — f >1
dzn dz (dx"‘1 orn =
doy

a0~ Y

The n-th derivative is also denoted as f(™)(z) or 4™, Note that

FO(x) = f(2).
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. d%y . .
Find o) for the following functions.
bz
© y = In(secx + tan )
Q =z2—y2=1
”
1
1. yy = ———(secxtanz + sec?z)
secr + tanx
= secx
y'! sec tan
2. 2z —2yy’ = 0
y = 2

y /

no o Y-y
Y = Y2

y—a(3)

= 2

Y2 9 22
= 7

v
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Theorem (Leinbiz's rule)

Let uw and v be differentiable function of x. Then

n

(un)™ =3 (Z) (1K) (8)

k=0

where (Z) = #Lk), is the binormial coefficient.

(@)@ = w©y©
W)V = uWy© 4 4Oy

@)@ = u@pO 4 2,MpD L 4Oy

@)® = u®pO 4 3,0 | 3,04@) 4 03

@)@ = u®y© 4 44®y® 4 6uDp® 4 4y Mp® 4 4 Oy®

v
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Proof

We prove the Leibniz's rule by induction on n. When n = 0,
(uv)® = uv = u @), Assume that for some nonnegative m,

(uv)(m) = Z (”;) u(m=F k),

k=0
Then
() ™+
= %(uv)(m)
_ A [m) e,
- (f)

N

- 3 m>(u<mk+1>v<k>+u<mk>v<k+1>)
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(2)irens (2o
M\ (m—k+1) (k) m (m—(k—=1)), (k)
(k>u v+ (k _ 1>U v
m m (m—k+1) (k)
(k)u 1 (k B 1)“ ’

! m m
_ (m—k+1)_ (k)

1 _
_ (m;r >u<m+1 k), (B)
=0

Here we use the convention (™) = (,/;) = 0 in the second last equality. This
completes the induction step and the proof of the Leibniz's rule. O

(m—h+1) () |

FIMs

Mz 1042

>
Il

<}
>
Il

3
+ -
i

(m—k+1), (k) |

(]

x>
Il

Il
2 1Mz

3 =
a

=
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Let y = z%€>*. Find y(") where n is a nonnegative integer.

Solution

Let uw =% and v = €%*. Then v9 = 22, u® =2z, u® =2 and «® =0 for
k > 3. On the other hand, v'®) = 3*¢3® for any k > 0. Therefore by Leibniz’s
rule, we have

s = (g) NOMONN (71l>u<1>v<n1>Jr (;L)u(z)v(nz)

22(3"€%®) + n(22) (3" e + 7”("2!_ D) (2)(3"26%)

(3"z* +2-3" 'nx 4+ 3" % (n® —n))e*”
3"72(9z% + 6nz + n® — n)e*”
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Mean value theorem

Definition (Increasing and decreasing function)
Let f(x) be a function. We say that f(x) is

@ monotonic increasing (monotonic decreasing), or simply
increasing (decreasing), if for any z,y with < y, we have

f(x) < fly) (f(=) > f(y))

@ strictly increasing (strictly decreasing) if for any z, y with 2 < y,

we have f(z) < f(y) (f(z) > f(y)).
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Suppose f(z) is a function which is differentiable on (a,b).

o

(2]

© 06 © o©

If f(x) attains its maximum or minimum at x = ¢ € (a,b), then
7e)=o.

Answer: T

If f'(c) =0, then f(zx) attains its maximum or minimum at
z=cé€ (a,b).

Answer: F

If f'(x) =0 for any z € (a,b), then f(x) is constant on (a, b).
Answer: T

If f(x) is strictly increasing on (a,b), then f'(x) > 0 for any z € (a, b).
Answer: F

If f'(z) > 0 for any (a,b), then f(z) is strictly increasing on (a, b).
Answer: T

If f(z) is monotonic increasing on (a,b), then f'(z) > 0 for any

x € (a,b).

Answer: T
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Theorem
Let f be a function on (a,b) and ¢ € (a,b) such that

@ 7 is differentiable at z = c, and

@ ecither f(z) < f(c) for any x € (a,b), or f(z) > f(c) for any = € (a,b).
Then f'(c) = 0.

Proof.
Suppose f(z) < f(c) for any = € (a,b). The proof for the other case is essentially the
same. For any h < 0 with a < ¢+ h < ¢, we have f(c+ h) — f(c) <0 and h is

negative. Thus
P 1 FEEW =@ |
h—0— h

On the other hand, for any h > 0 with ¢ < ¢+ h < b, we have f(c+h) — f(c) <0
and h is positive. Thus we have

<0

PO — tim LT =

h—0+ h

Therefore f/(c) = 0. O
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f'(xz) > 0 for any =

Strictly increasing

0, ifz<0
2 ifz >0

Monotonic increasing < f'(z) > 0 for any =
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Theorem (Rolle’s theorem)

Suppose f(x) is a function which satisfies the following conditions.
© f (=) is continuous on [a,b].
@ f(x) is differentiable on (a,b).
Q f(a) = f(b)

Then there exists £ € (a,b) such that f'(§) = 0.
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Proof.
By extreme value theorem, there exist a < a;, 8 < b such that

fla) < f(z) < f(B) for any z € [a, b].

Since f(a) = f(b), at least one of «, 8 can be chosen in (a,b) and
we let it be £&. Then we have f/(§) = 0 since f(x) attains its
maximum or minimum at &. L]

<
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Theorem (Lagrange’s mean value theorem)

Suppose f(x) is a function which satisfies the following conditions.
Q f(z) is continuous on |[a,b).
@ f(x) is differentiable on (a,b).

Then there exists £ € (a,b) such that

1) = f(a)

=2

171/ 342



Derivatives
Differentiation Mean value theorem
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Let g(2) = /() ~ 2O D o ) Since g(a) = 9(0) = s(a),
by Rolle’s theorem, there exists £ € (a, b) such that
g =0
ro- 1010 _
ro = 101
[
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Let f(x) be a function which is differentiable on (a,b). Then f(x) is
monotonic increasing if and only if f'(x) > 0 for any x € (a,b).

Proof. Suppose f(x) is monotonic increasing on (a,b). Then for any
z € (a,b), we have f(z + h) — f(z) > 0 for any h > 0 and thus

Py= i TETNS@) 5

h—0t

On the other hand, suppose f'(x) > 0 for any = € (a,b). Then for any
a, B € (a,b) with a < 8, by Lagrange's mean value theorem, there exists
¢ € (a, B) such that

f(B) = fla) = f(&)(B—a)>0.

Therefore f(x) is monotonic increasing on (a,b). O

f(x) is constant on (a,b) if and only if f'(z) =0 for any = € (a,b).
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Theorem

If f(x) is a differentiable function such that f’(x) > 0 for any x € (a,b),
then f(x) is strictly increasing.

Proof.

Suppose f'(z) > 0 for any = € (a,b). Then for any «, 5 € (a,b) with
a < 3, by Lagrange's mean value theorem, there exists £ € (a, 3) such
that

| \

f(B) = fla) = f'(§)(B—a) > 0.

Therefore f(x) is strictly increasing on (a, b). O

A\

The converse of the above theorem is false.

f(x) = 23 is strictly increasing on R but f/(0) = 0 is not positive.
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1
Prove that 1 — — <Inz <z — 1 for any = > 0.
T

Solution. Let f(z) =lnz — <1 - %) Then f'(z) = % — — ="——. Now
(1) =0 and

O<z<l|z>1
f'(x) - +
Therefore f(x) attains its minimum at z = 1 and we have

fx)y=Inz — mTil > f(1) =0 for any > 0. On the other hand, let

glx)=xz—1—Inz. 'l'heng’(gr):lfl:x_1
T

. Now ¢'(1) =0 and

O<zx<l|z>1
f'(@) - +

Therefore g(z) attains its minimum at z = 1 and we have
glx)=x—1—Inz > g(1) =0 for any = > 0.
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Differentiation Mean value theorem
Application of Differentiation

Let 0 < a < 1. Prove that

1+ ar— <(1+2)*<1+az, foranyz>0.

Solution. Let f(z) =1+ az — (1 +x)®. Then f(0) =0 and for any = > 0,

f/(l’):a—ﬁ>a—a:0.

Therefore f(z) > 0 for any > 0. On the other hand, let
N2
g(z) = Q+2)*— (1 + oz — M). Then ¢g(0) = 0 and for any = > 0,

gz = m—a—&—a(l—a)w
> m—a(l—(l—a)x}
_a(l—a)’?
1+ (1-a)x >0

Therefore g(x) > 0 for any z > 0.
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Differentiation Mean value theorem

Application of Differentiation

Theorem (Cauchy’s mean value theorem)

Suppose f(z) and g(x) are functions which satisfies the following conditions.
Q f(x),g9(x) is continuous on [a,b].
Q f(x),g(x) is differentiable on (a,b).
© J'(x) #0 for any x € (a,b).

Then there exists £ € (a,b) such that

f'€) _ f(b) - f(a)

g€ g(b) —g(a)
Proof. Let h(z) = f(z) — M(g(fﬂ) —g(a)).

9(b) — g(a)
Since h(a) = h(b) = f(a), by Rolle’'s theorem, there exists £ € (a, b) such that
’ . f(b) — f(a) ’ _
&L © = 0

' _ f®) = f(a)
g'(€) g(b) — g(a)
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Differentiation Mean value theorem
Application of Differentiation

L’Hopital’s rule

Theorem (L'Hopital’s rule)

Let a € [—o0, +00]. Suppose f and g are differentiable functions
such that

(1) li_r)n f(z) = li_I)n g(x) =0 (or £00).
@ ¢'(z) #0 for any x # a (on a neighborhood of a).

e
° alc—m J'(x) = L

Then the limit OfM at x = a exists and lim M =
g(x) T—a g(x)
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Application of Differentiation

Proof

We give here the proof for a € (—o0, +00). For any = # a, by
applying Cauchy’'s mean value theorem to f(z), g(z) on [a,x] or
[x, a], there exists £ between a and z such that

(2) = f(@) _ fx)
g'(€ ) ~ 9@ —gla)  g(@)

Here we redefine f(a) = g(a) = 0, if necessary, so that f and g are
continuous at a. Note that £ — a as © — a. We have

tim 7 — gy 7O _

i g(z) e g'(§)
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example (Indeterminate form of types % and E)
o0

. sinxz —xcosx . xsinx 1
1. im ———— = lim —— = =
z—0 3 =0 322 3
: z? i 2z . 2 ) 2
2. lim — = lim = = lim = lim =
z—0 Insec o0 SCCLINL 0 tanxy @—0sec’T
3 2
. ln(l T ZES) . 1_:13 . g z?
3. lim —————~2 = lim = lim z lim
z—0 x —sinx z—01—cosx z2z—01+4+ a3 201 —cosx
. 2x
= 3lim — =
z—0 sin x
4 3
. In(1+2%) . T . 421+ 2?)
4. lim ———= = lim ——= lim ———* =2
z—+oo In(1 + z2) ztoo 2L zhtoo 2m(1 + x4)
14z
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Differentiation Mean value theorem

Application of Differentiation

Example (Indeterminate form of types co — oo and 0 - co)

1 1 —i=1 1-1
5. lim (—— ) = lmo>— 2Ty =
z—=1\lnz x-1 =1 (z—1)lnz 221 2= {Inz
. z—1 . 1 1
= lim —— = lim —— = —
z—lx—1+xlnz z—-12+4+Inx 2
tan—1! s 2
6. lim cot3ztan—!zx = lim = lim —1T%
z—0 z—0 tan3z z—0 3sec? 3z
I 1 1
= m — — —
x—0 3(1 + z2)sec23z 3
. . . Insinz . cos
7. lim zlnsinz = lim 0 = lim Smlz
z—0t z—01 = z—0t ——5
x x
_ lim —z2 cosx —0
z—0t sin &
. z+1 . In(z +1) —In(z — 1)
8. lim =zln = lim
x—>+00 r—1 r—+o00 %
1 1
. T+l z—1 . D
= lim —F = lim —m =2
Z—+oo - z—+o00 (z 4+ 1)(z — 1)
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Differentiation

Example (Indeterminate form of types 0

Evaluate the following limits.

Q@ lim z5°°
1
Q ili% (cosz)=?

Q lim (1+22)5m%

x—+00

Derivatives
Mean value theorem
Application of Differentiation
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Differentiation Mean value theorem

Application of Differentiation

. . . . . . . Inz
Q In( lim 2% ) = lim In(z%"%) = lim sinzlnz = lim
z—0t z—0t z—0t z—0t cscx

1 —sin?x
= lim —%— = lim — =0

z—0+ —cscxcotx z—0T T COST

Thus lim z5"* = ¢0 = 1.
z—0t

1 L 1 —t
Q n (hm (cosx) =2 ) = lim0 In(cos z) =2 = lim DCORT _ fim —F
T—

z—0 2 z—0 2
. —sec?x 1
= lim Y
z—0 2 D
Thus hmo(cos x) = 3_%
3 3In(1 + 2z) .
(3] ln( lim (1+2x)1m) 1 DB T — T 1+12a: —3
T=ER T—+00 Inxz z—too I

1
Thus lim (14 2x)3mz = ed.
T——+00
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Application of Differentiation

Example

The following shows some wrong use of L'Hopital rule.

1.

secr — 1 . secxtanz
M = — 1 - =
z—0 e — 1 z—0 2e2%
- secZxtanx + secd x
= lim
x—0 462"3
1
4

This is wrong because lirr%) e?* £ (,4+00. One cannot apply
T—>

, . . secxtanx o
L'Hopital rule to lim —————. The correct solution is
x—0 2€2x
secx — 1 . secxtanz
im ——— = lim ———— = 0.
x—0 62"3 -1 z—0 2629:
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Application of Differentiation

2.

. bx—2cos’zx . 5+ 2cos zsinx
lim - 9 = lim _
z—+o0 3x + sin“ x z—+oo 3+ sinx cosx
. 2(cos®z — sin® )
= lim =
z—+o00  cos?x — sin® x
= 2

This is wrong because lim (5 + 2coszsinz) and
r— 400

lim (3 + coszsinx) do not exist. One cannot apply L'Hopital
Tr—+00
. 5+ 2coszsinx L.
ruleto lim ———— . The correct solution is
z—+oco 3+ sinx cosx

2

. 5z — 2cos? . 5—2“’% 5
lm ————— " — lim ——2%  —

z=>+00 3z +sin?z z—+oo 3 4 Lnj z 3
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Application of Differentiation

Taylor series

Definition (Taylor polynomial)

Let f(z) be a function such that the n-th derivative exists at © = a. The
Taylor polynomial of degree n of f(z) at x = a is the polynomial

"(q 3)(a ) (q
pa(@) = F@+f @@=+ 0D a4 D gy LD gy,

Theorem

The Taylor polynomial py(z) of degree n of f(x) at x = a is the unique
polynomial such that

-
8
|
IS
\

pglk)(a) = f(k)(a) fork=0,1,2,...,n.

A
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Differentiation Mean value theorem

Application of Differentiation

Find the Taylor polynomial ps(z) of degree 3 of f(z) =v1+z = (1+ x)% at
z = 0.
Solution. The derivatives f*) () up to order 3 are

k 0 1 2 3
(k) 1|1 1 1 3| 3 5
[P (z) | (1+2)2 5(14—%) 2 —Z(l-l—m) 2 §(1+33) 2

1 1 3

(k) 1 et _- b

F90) ! . ’

2 3
ps(@) = SO+ O+ 07 +/O0%
= e (Nea (D2 (S
- 2) " 4)2r T\8) 3
o 1 T .TQ .TB
T
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

) ( 1 + r .'l,'2 + l,':;
o pale) 2% 716
pi(z) =1+ B}
2 flz)=vV1+z
po(w) =1 v a2
| pl 1435

Figure: Taylor polynomials for f(z) =142 atx =0
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Differentiation Mean value theorem

Application of Differentiation

Let f(z) = cosz. The first few derivatives are

k 0 1 2 3 4
f®(z) [ cosz | —sinz | —cosz | —sinz | cosz
™0 [ 1 0 —1l 0 1

We see that

k 3 _ k g _
) () — (=1)*cosz, ifn=2k d £ (0) = (1%, ifn=2k
F(@) {(—1)ksinx, tnoon_1 4O =1g ifn—=2k—1

Therefore the Taylor polynomial of f(z) of degree n =2k at z =0 is

7 2 1 3 (2k)z2F
I R R T
_ 2 3 4 _1\k,.2k
= 14Oz + ;)w +(0§‘f +(1i‘f %
_ 2.2 = (=12
Sl w T et e

v
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Derivatives
Differentiation

Mean value theorem
Application of Differentiation

po(@) = po(a) = 1 —

x 20 z®
2 24 720 * 40320
po(z) =pi(z) =1

f(z) = cosz
T 0 T T

B

7

k]

po(@) = pu(z)

pf() = py(a) =1 2 po(x) = pr()

Figure: Taylor polynomials for f(z) = cosz at x =0
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Differentiation Mean value theorem

Application of Differentiation

Example

|

Find the Taylor polynomial of degree n of f(x) = p atxz = 1.

Solution. The derivatives f*)(z) are

k 0 1 2 3 n
fO@) [ -z 22273 | 6z |- [ (-=1)"nle"FD
Ao 1 =1l 2 —6 |- (—1)"n!

Therefore the Taylor polynomial of f(z) of degree n at x =1 is

" T — 2 (n) T — n
f(l)H/(l)(x_l)*WTl)*“*%
2(x — 1)? —6)(z —1)3 1l — 1)"
-V COE-V D1
= 1_(55—1)+(I—1)2—(m—1)3+...+(_1)n(m_1)n

Pn(z)

= 1—(z-1)+
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Differentiation Mean value theorem

Application of Differentiation

> pa(x) =1~ (x— 1)+ (z — 1)?
. po(z) =1
1
05 () = =
- e = 1
pi(z) =1—(z—1)
” py(z) =1—(z— 1)+ (x—1)>%— (z—1)°

1
Figure: Taylor polynomials for f(z) = — at =
x
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Application of Differentiation

Example

Find the Taylor polynomial of f(z) = (1 + z) at x = 0, where a € R.
Solution. The derivatives are

fl@) = (+2)°
fll@) = al+2)!
@) = ala-1)1+2)?
(z)

ala —1)(a—2)(1 +z)*?

fP@) = ala-1)(@=-2)---(a-k+1)1+z)*"
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Differentiation Mean value theorem

Application of Differentiation

Thus we have

f0) = 1
f10) = «a
70) = ala—1)
FPO) = al@-D@=2):(a=k+1)
Therefore the Taylor polynomial of f(z) = (1 + x)* of degreemat z =0 is
1 2 (3) 3 (n) ®
pa(@) = FO)+ Ozt (20!)9” + 1 ?E?)x +-~+%
2 n
_ 1+ax+a(oz71)x Ao +o¢(a71)(a72)~"(afn+l)m
2! nl
S AT 2 D -0 D S (A g
~ o )" \2)" n)"
where
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Differentiation Mean value theorem

Application of Differentiation

The Taylor polynomials of degree n for f(z) at x = 0.
f(z) Taylor polynomial
- 1 z? oz ai™
e +$+§+§+"'+E
2 4 6 k_ 2k
x x z (=1)%z _
3 5 7 k. 2k+1
. o a R (=1)*z _
sinz x—§+ﬁ—ﬁ+"'+m7n—2k’+l
2 3 4 n+1l_n
x x x (=) =z
In(1 S e T S e
n(l+a) z— -+ 3 -4t -
1i:c l+azt+a®+2° 4+ 42"
2 3 4 n+1 n
® @ az 5x (=)™ (2n — 3)!lz
Vite Ittt s T 2]
1.2 _ _9),.3
1+2z)* 14az+ o 2'1)36 ala 1)3(? 2)e + —l—( >m"
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Mean value theorem

Differentiation

Application of Differentiation

Example

The Taylor polynomials of degree n for f(z) at = a.

f(@)

CosST; a =T

V100 — 2z; a =0

Taylor polynomial

z —7)2 z—m)* 1)kt (g — )2k
SRS S a2
€2+€2($—2)+6(m272) qF oo +e(wni—!2)"

1—(z—1)+ (x—1)2—(z— 1)+

1,54,&,&34, +(_1)’ﬂm’ﬂ
2 4 8 16 2n+1
1+2(x—1)+4(z —1)> +8(z — 1)
2 3
o-*_*r ¥ . _
10 2000 200000

(2n — 3)NNz™
102n—1p!

e () =)
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Definition (Taylor series)

Let f(x) be an infinitely differentiable function. The Taylor series
of f(x) at z = a is the infinite power series

z ®)(q
T(2) = f(@)+ F@@-a)+ 102 @02+ T D ap
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Application of Differentiation

Differentiation

Example

The following table shows the Taylor series for f(z) at = = a.

f(z)

e’; a=0
cosz; a=0

sinx; a=m

vVi+z; a=0
! ;=0

Vits o

1+2)* a=0

Taylor series
2 3

1 x
+at g

1£B2 1‘4 1‘6
TR T T
(@—m)° (z—m)°
—Emmt g T
(-1 @-1° (@-1*
(z—1) 5 + 3 1 F
L e st
2 8 16 128
LT 3713_@_1_35954_63365
28 16 ' 128 256
_ 2 _ _ 3
1+ax+o¢(a2'1)m +oz(a 1)3('a 2)x
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Differentiation Mean value theorem

Application of Differentiation

e} .Tk 2172 1.3
x 1 o2 4.
5 P I T
%) (71)kx2k x2 :)54 x()‘
; =l -
cosT 2 T op Tt e
o0
) ) (_1)kx2k+1 _ CCS x5 z7
S Pl -7y T e TH-T T
o9 (—1)kt1gk x2 2 ozt
14y S CEUTE_ o @ o
k=1 k 3
1 > ,
1 x; Sah =14z +aZ 23+
- k=0
o) 2 3
a. oy ok _ ala—12?  ale—1)(a—2)z®
(1+2)%; kZ::O(k) =1+azx+ o + 3l +
o 1)k g 2k+1
tan— 1! x; > ( )'w = — i 4+ a £
= 2k+1 375 7
) |p2k+1 5
o S rarmen = ()5 ( )“’* (57
sinThe Y Rk 1) 2) 3 " 5 "\aas) 7™
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Application of Differentiation

Theorem
Suppose T'(x) is the Taylor series of f(x) at x = 0. Then for any positive
integer k, the Taylor series for f(z") at x =0 is T(z").

Example

| 5\

f(z) Taylor series at © = 0

1122 1—a?4at—ab 4 ...
B N A i
-2 2 78 T 16 ' 128
sina® @t 2 2
i 3l 5l 7!

A
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Application of Differentiation

Theorem

Suppose the Taylor series for f(x) at x =0 is

oo
T(z) =Y arz" = ao + a1z + azz” + aza® + - - .
k=0

Then the Taylor series for f'(x) is

T'(x) = Z karz® ' = a1 + 2022 + 3azx> + dagx® + - .
k=1
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Application of Differentiation

Example

Find the Taylor series of the following functions.
1
O arep
Q tan 'z

Solution

|

1

- _ () — ;
Q Let F(z) = T3z that F'(x) S The Taylor series for

F(x) atx=0s

Tx)=-14+z—a*+a2° —a*+ ...

1
Therefore the Taylor series for F'(z) = (S is

T (x)=1-2z+3z" — 42 +--- .
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Application of Differentiation

Solution

2. Suppose the Taylor series for f(z) =tan 'z at x =0 is

4

T(x) = ao + a1z + azx® + azx® + aqaz™ - .

Now comparing T' (x) with the Taylor series for f'(x) =

takes the form
1—2® 42" —2%+...,

we obtain the values of a1, as,as, ... and get
3 5 7
T T T
= T E
T(x)=ao+=x Ty -+

Since ap = f(0) = 0, we have
@ 2
3 5 7

7

2

1+x

which
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Application of Differentiation

Suppose the Taylor series for f(x) and g(x) at x = 0 are

respectively. Then

I
NgE

ES
Il
<}

I
M3

ol
I

0

the Taylor series for f(x)g(z) at x =0 is

3 (Z abn k>

n=0

= aobo + (aob1 + aibo)x + (aobz + a1b1 + a2bo)iv2 +

k 2 3
arT” = ao + a1x + ax” +asxr” + -,

bia”™ = bo + brz + baz® + bsz® + - -+,
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Differentiation

Derivatives
Mean value theorem

Application of Differentiation

The coefficient of 2™ of the Taylor series of f(z)g(z) at x =0is

(f9)"™(0)

n!

" (n\ £f®0)eF) (o
Z<k>f ()i! (0)

(Leibniz's formula)

k=0
~_ ot fP0)"M(0)
— kl(n— k) n!
~ f*0) ¢" M)
— k! (n —k)!
Zakbnfk
k=0
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Differentiation

Example

@ The Taylor series for e*® In(1 + z) is

144 1622 643 x2 x3 zt
+4x + 21 4 30 qFooo I—7+f—*+“~

3 4
= w+(—1+4)x2+(1+4~(—1)+8>x3+"'
2 3 2
_ 7z? 1923
= wh o
@ The Taylor series for tanila; is
—x

Il
8
+

|
+
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Application of Differentiation

Theorem

Suppose f(x) and g(x) are infinitely differentiable functions and
the Taylor series of f(x) and g(x) at x = 0 are

akazk + ak+1xk+1 aF ak+2xk+2 + -

and
bkxk T bk+1l’k+1 TF bk+2$k+2 + .-

where by, # 0. Then

lim f@) _ lim % + ap 1T + appox® + - -
0 g(z) z—0 bk+bk+1x+bk+21‘2+.,,
_
= 5
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Application of Differentiation

The assumptions on f(z) and g(x) imply that
FO) = 1'(0) = f"(0) = -+~ = f*7V(0) = 0; f(0) = ax
9(0) = ¢'(0) = g"(0) = --- = g*"V(0) = 0; g™ (0) = b

Therefore, by L'Hopital's rule, we have

f@) _ . f@) (@)

. . f®@)  a
lim ——~ = lim = lim =... = lim = —.
z—0 g(:c) z—0 g’(x) z—0 g"(m) z—0 g(k)(a:) bi
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Application of Differentiation

. T

1. lim -

20 T — sin
232 3

= lim =

= lim =
c—0 I

11
1

2. lim
xz—0

= lim -
x tan z—0 T sinT

322 ac3 (1:2
_ hm(1+x+7+m)(x—? )=zl -5 4-)
0 m(x_§+...)
( + 2, z® _ _ 2
o T x—|—3+---) (w 2+...)

4
z—0 x2 -z

3 6
2 5
i

(ez 1 ) e’sinx — x cosx
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Application of Differentiation

Curve sketching

To sketch the graph of y = f(x), one first finds
Domain: The values of = where f(x) is defined.
x-intercepts: The values of z such that f(z) = 0.
y-intercept: f(0)

Horizontal asymptotes:
If lim  f(z) =0b, then y = b is a horizontal asymptote.

x——00/+00

@ Vertical asymptotes:

If lim f(x) =—00/+ 00, then z = a is a vertical
z—a~ /at
asymptote.
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Application of Differentiation

Example 1: f(z) = 3:6:—25
T

3z +5 1
_ r + _3

P —3_
0 y x+2 x+2
Domain : T # =2
8 B 5
x-intercept : -3

y-intercept :

Horizontal asymptote: y =3
Vertical asymptote : r=-2
4
_____ :________'_____;____________________
y=3 15
2
6 4 5 0 2 4 6 8 10
]
-2
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Differentiation Mean value theorem

Application of Differentiation

2
x4+ 2
Example 2: f(z) = —5—
4+ 1
? 242 n 1
1 = =
V= +1 241
256 .
Domain : R
2 r-intercept : none
y-intercept : 2

Horizontal asymptote : y =1
Vertical asymptote : none

0.5
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Differentiation Mean value theorem

Application of Differentiation

x
Example 3: f(z) = ——
1.5
y=1
___________________ e o e eeeo-.
oz
os YTl
-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14
05 Domain : R
z-intercept : 0
y-intercept : 0
____________________ e ...
y=—1 Horizontal asymptote: y=—-1,y=1
Vertical asymptote : none
-15
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Differentiation Mean value theorem

Application of Differentiation

Example 4: f(x) = |ln |z||

4 _
y = [In |||
Domain : x#0
° z-intercept : +1
y-intercept : none
Horizontal asymptote : none

Vertical asymptote :

3 2 N\ 0 71 2 3 4 5
\ /7
N 7
\
\
\\1 N
L y=1
\ prmn
L y=Inlz
‘I
|I
l’Zl
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Differentiation Mean value theorem
Application of Differentiation

Definition (Oblique asymptote)

lim  (f(z)— (az +b)) =0,

z——00/+00

we say that y = az + b is an oblique asymptote of y = f(z).
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Application of Differentiation

2 p— p—
Example 5: f(z) = L

—2
2 2
z—3r—4 x°—2x—(r—2)—6 6
Note that = ( ) =zr—1-— .
Tz —2 T —2 T —2
¢ E y=x—1 /"/
) i L 2> =3z —4
| Pl Yy =
2 e Y r — 2
/"/ . i Domain : T # 2
E z-intercept : —-1,4
=2 y-intercept : 2
- E Vertical asymptote : x = 2
™ ' Oblique asymptote: y=x—1

216 / 342



Derivatives
Differentiation Mean value theorem
Application of Differentiation

Definition
Let f(z) be a continuous function. We say that f(z) has a

© local maximum at z = a if there exists § > 0 such that f(z) < f(a) for
any z € (a —d,a+9).

@ local minimum at = = a if there exists § > 0 such that f(z) > f(a) for
any z € (a —d,a+9).

local maximum y = f(z)
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Application of Differentiation

Let f(x) be a continuous function. Suppose f(x) has local maximum or
local minimum at x = a. Then either

Q f'(a)=0, or

@ f'(x) does not exist at x = a.

f’(x) does not exist
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Application of Differentiation

Theorem (First derivative test)

Let f(x) be a continuous function and f'(a) = 0 or f'(a) does not
exist. Suppose there is § > 0 such that ‘

a—d0<z<ala<z<a+d

f'(=) + -

Then f(x) has a local maximum at x = a.

o

a—o0<z<ala<z<a+d
f'(z) — +

Then f(x) has a local minimum at z = a.
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Application of Differentiation

Theorem (Second derivative test)
Let f(x) be a differentiable function and f’(a) = 0.
@ If f"(a) <0, then f(z) has a local maximum at x = a.

/(@) <0

@ If f"(a) > 0, then f(z) has a local minimum at x = a.

f"(a)>0
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Differentiation Mean value theorem
Application of Differentiation

Definition (Turning point)

We say that f(x) has a turning point at z = a if f’(x) changes
sign at x = a.

If f(x) has a turning point at 2 = a, then either f’(a) = 0 or
f'(x) does not exist.

Turning point f'(a)=0 f'(a) does not exist

Relative maximum

Relative minimum
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Application of Differentiation

Example 6: f(z) = %
-3
f(x)*m,x%f&l
Py @AW~ @-3)2r+d) (@4 DE-7)
(z = 1)%(z +5)° (z = 1)%(z +5)*

Thus f'(z) =0 when z = —1,7.

r< -5 -b<r<—-1|-1l<ae<l|l<ax<T|ax>T7
HOIS - + + -

(71,%) is a minimum point and (7,%8) is a maximum point.
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Application of Differentiation

Example: f(z) = v—3

x24+4x -5
1 I
! 4=t
1 I
1 1
1 1
] 15 |
1 I
: 1 3
1 I y fr .
! - 244 -5 .
1 51 = 1
1 1 5 I (7, *)
! (-1,35) ! 3 J8
7 & :5 4 3 2 [ ’ 3 5 5 7 8 9
1 1
| 05 1
! ! Domain : r# —5,1
: , : z-intercept : 3
1 1 3
! ! y-intercept : -
: & 15 : B
1T=—9 | Horizontal asymptote : y =10
1 1
1 2 I Vertical asymptote : r=-dr=1
1 1
1 | 1 1
Turni ints : -1, - —
! . ! urning points (-1, 2), (7. 18)
1 1
1 I
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Differentiation Mean value theorem

Application of Differentiation

Definition (Concavity)
We say that f(x) is

@ Concave upward on (a,b) if f”(xz) > 0 on (a,b).

@ Concave downward on (a,b) if f”/(z) <0 on (a,b).

Concave upward (f”(z) > 0)

Concave downward (f”(z) < 0)
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Application of Differentiation

Definition (Inflection point)

We say that f(z) has an inflection point at x = a if f"(z)
changes sign at x = a.

If f(z) has an inflection point at z = a, then ether f”(a) =0 or
f"(a) does not exist.
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Differentiation Mean value theorem

Application of Differentiation
Example 7: f(z) = |z +1|(3 — x)

_ e h@=3)  ifr<-l
f(z) =]z +1[(3 )_{—(x+1)(x—3) ifz>—1

y=|r+1/(3—x)

Domain : R
z-intercept : -1,3
y-intercept : 3
Asymptotes : none
Turning point : (—1,0),(1,4)
Inflecction point :  (—1,0)
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Differentiation Mean value theorem

Application of Differentiation

Example 8: f(z) =2+ ﬁ
Since mgg{)o(f(x) —z) = xgrﬂ?oo Tl =0,

y = f(x) has an oblique asymptote y = x.
1
When z < 0, f(z) =z — —.

1 xT
f/(m):1+;
@) ==
When z > 0, f(:c)::c—i—%.
@ =1-—
1 2
/ (fﬂ)zg
z<0|0<z<]l |z>1
f'(@) + - +
f'x) |+ + +

f(x) has a minimum point at z = 1.
f(x) has no inflection point.

227 /342



Derivatives
Differentiation Mean value theorem
Application of Differentiation

. Domain :

<1 x-intercept :
y-intercept :

= Asymptotes :
Turning point :
s Inflection point :

z#0
-1
none
r=0,y==
(1,2)

none
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

22+ 1]

Example 9: f(z) 3

Domain : T #3 y=-2
1
z-intercept : -—
2
. 1
y-intercept : -3
Asymptotes : r=3,y=-2,y=

1
Turning point : (— 5 )

1
Inflection point : <7 -, )
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Differentiation Mean value theorem

Application of Differentiation

Example 10: f(z) =2 — (z —8)3

)= L
fl=) = 3(x —8)3
R T
1) =
f'(z), f"(z) do not exist at = = 8.
r<8|xz>8
fil@) | - -
f'@) | = +

f(x) has no turning point.
f(z) has an inflection point at z = 8.
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Differentiation Mean value theorem

Application of Differentiation

Example 10: f(z) =2 — (z — 8)%

\4 y=2—(z—8)

=

Domain :
x-intercept :
y-intercept :
Asymptotes :
Turning point :
Inflection point

16

none
none

(8,2)

30
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Example 11: f(x) =

Differentiation

Derivatives
Mean value theorem

Application of Differentiation

1Vl

Domain :
z-intercept :
y-intercept :
Asymptotes :
Turning point :

Inflection point :

~1,0,1

(—=1,0),(0,1),(1,0)
(—=1,0),(1,0)
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

2
-2
Example 12: f(z) = i +;27
Domain: = #£ 0
224z —2 T —2
f(x) = 72 =1+ 2

f(z) has a horizontal asymptote y = 1.
) = 2 —22(x—2) xz-2@-2) x-4
)

o 3 3

f'(x :Owhen =4
s Pt A N ek | A €
zf z6 4
f"(x) =0 when z = 6.
(—0,0) | (0,4) | (4,6) | (6,+0)
flla) |~ ¥ | - -
f”($) — — — .

(4, 2) is maximum point.
(6, %) is an inflection point.

—=0oo|w©
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Differentiation

Derivatives
Mean value theorem

Application of Differentiation

2
zé4+x -2
Example 12: f(7) = ———
x
(—o.0) [ (0.4) [ (4,6) [ (6,49 | ., 49 10
F@| - |+ [ - | - 4 )_ 6,35
@] - - | - + °
y - 1 03
0 Domain : x#0
" z-intercept : -2,1
) 9 y-intercept : none
y= r JN;: _ Vertical asymptote : z=0
L ° Horizontal asymptote : y =1
04 9
Maximum point : (4, g)
. . 10
02 Inflection point : (6, g)
-2
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Derivatives

Differentiation Mean value theorem
Application of Differentiation
2
zé4+x -2
Example 12: f(7) = ———
x

z-intercept : -2,1
y-intercept : none
Vertical asymptote : z=0
Horizontal asymptote : y =1
9
Maximum point : (4, g)
. . 10
Inflection point : (6, g)
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Differentiation Mean value theorem

Application of Differentiation

23
Example 13: f(z) = 72)2
fa)=a+4+ 1(233 7 A2
f(z) has an oblique asymptote y = = + 4
sy 3t (x—2)2 —2(x—2)2® 3P (x—2) —22® 2’ —62?
N e L N =
f'(z) =0 when = 0,6
v (Ba® —12z)(x —2)% = 3(x — 2)*(2® — 627) 24z
NG (z —2)0 ~ (@ 2)
f"(xz) =0 when z =0.
(7007 O) (07 2) (25 6) (67 +OO)
F@) |+ + | - +
[ () - + + +
(6,27) is minimum point.
(0,0) is an inflection point.
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Differentiation Mean value theorem

Application of Differentiation

3
X
Example 13: f(z) = —
25 : (%
I .
Domain : T #2 ! y = x .
x-intercept : 0 2 | (r—2) Pt
1 Phd
y-intercept : 0 ! (6, E) Pt
Vertical asymptote : = =2 s | 2 el
1 o7 =
Oblique asymptote : y=x+4 ! ° JPtes y=z+4
- . 27 0 | e
Minimum point : (6, ?) LT
b
Inflection point : (0,0) o (=00,0) | (0,2) | (2,6) | (6,+00)
T f | + + | - +
,/" ! f(x) - + + +
14 12 10 -8 6 ’/’4 -2 0 % 4 6 8 10 12 14 16
(0,0 !
-7 1
-7 1
Pl =2
,” -10 :
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Differentiation

Derivatives
Mean value theorem
Application of Differentiation

5 ;
|
Domain : T #2 i
z-intercept : 0 0 !
y-intercept : 0 |
|
Vertical asymptote : z = 2 16 !
Oblique asymptote : y=x+4 |
I
. . 27 0 '
Minimum point : (6, ?) !
!
Inflection point : (0,0) , ‘i
_-r |
Pie 1
-7 1

14 12 10 8 . i 4/ 0 % 4 6 8 10
0,00
/” 5 !
L |

,/" i r=2

-2 0 '
|
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example 14: f(z) = x%(m — 3)%

First ) )
3 3 3
lim ﬁ: lim w3 (z —3)3 = lim (1_§> =1
rz—+oco I z—Foo xX r—+oo xX
and
2
1 = 1 1 3)° 1
AR U@ e = e \Ute) T
2
— lim (1-3h)s —1
h—0 h
= =2

Thus y = x — 2 is an oblique asymptote.
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example 14: f(z) = 23 (z — 3)
f'(@) 2”3 (z—3)3 + Zas(z—3)75
1

f'(z) =0 when z =1 and f'(x) does not exist when x = 0, 3.
ey = B9 -Gate=3)i+3iE@=3 -1
z3(z — 3)3
_ 3z(z—-3)-2@-3)+z)(z—-1)
- 3¢5 (- 3)3

z3 (z—3)3
/" (x) does not exist when z = 0, 3.

(_0070) (071) (173) (37+OO)
f'(z) + + - +
@+ [ - [ - -

(1,2%) is a maximum point.

(3,0) is a minimum point.

(0,0) is an inflection point.
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example 14: f(z) = x%(a: - 3)%

y=x—2
(co00) [(0.0) [(L3) [ Giro) | +f (1,2)

fa] + + | - + ¢ /7 1

) T - - - ! Oy = x3(x — 3)3
) T T

/" Domain : R

7 z-intercept : 0,3
s y-intercept : 0
,// " Oblique asymptote: y=x —2
0 . Turning points : (1, 2%), (3,0)
o ] Inflection point : (0,0)

241/342



Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example 14: f(x)

(=00,0) | (0,1) | (1,3)

f(z) + +
@)+ -

. Domain : R

o z-intercept : 0,3
s y-intercept : 0
,// " Oblique asymptote: y=x —2
/// . Turning points : (1, 2%), (3,0)
vl ] Inflection point : (0,0)
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Integration
Techniques of Integration
Integration More Techniques of Integration

Indefinite integral and substitution

Definition
Let f(x) be a continuous function. A primitive function, or an
anti-derivative, of f(z) is a function F'(x) such that

The collection of all anti-derivatives of f(z) is called the indefinite
integral of f(z) and is denoted by

/ f(z)dz.

The function f(x) is called the integrand of the integral.
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Integration
Techniques of Integration

Integration More Techniques of Integration

Note: Anti-derivative of a function is not unique. If F'(x) is an
anti-derivative of f, then F'(x) + C' is an anti-derivative of f(x) for
any constant C. Moreover, any anti-derivative of f(x) is of the
form F(z) 4+ C and we write

/f(x)d:c =F(x)+C
where C' is arbitrary constant called the integration constant.

Note that [ f(z)dz is not a single function but a collection of
functions.
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Integration
Techniques of Integration
Integration More Techniques of Integration

Let f(x) and g(x) be continuous functions and k be a constant.

o/ z) +o(z dm_/f der/()d
Q/kf(x)dx:k/f(w)dx

Theorem (formulas for indefinite integrals)

sec? zdx = tanz + C;

sec x tan xdx = secx + C;

—— e —
——

n+1
n _ 1
z"dr | +C,n # 1
e’dr =e” + C; /;dmzlnm—i—C
coszdr = sinz + C; sinxdx = —cosx + C

csc® zdx = —cotz + C

cscx cot xdr = —cscx + C
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Integration
Techniques of Integration

Integration More Techniques of Integration

2
1. /(:CB—w+5)dm =

7
2
9 /(ac—|—1)2dm _ x® 42z 4+ 1
%

T

(x+2+l) dx
a8

+2z+In|z|+C

I

|
+
ot
8
+
Q

dx

3z + .z —1
VT

4. /(3Slgm—26x)dw =
cos? x

= 3secx —2e* +C

dx =

Il
\ w‘&w\\, *“‘H»

(313/2 +1— x_l/Q) dx

e

+x72x%+c

Il
ol o
8

(3secxtanx — 2e”) dz

—
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Integration More Techniques of Integration

Example

Suppose we want to compute

/x\/a:2 + 4dx

First we let
u= x> + 4.

We may formally write

d’LL d 2 _
du d {%(1’ + 4)} dzx = 2zdx

Here du is called the differential of u defined as Z—;L dx. Thus the integral is

/x\/mdx = /\/FZxd:v /fdu

_oul @t

3 3 +C

v
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Integration More Techniques of Integration

[avvia - /m%)
— ;/Md:f
= ;/Md(x2+4)

3
2

2
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Integration More Techniques of Integration

Theorem

Let f(x) be a continuous function defined on |a,b]. Suppose there
exists a differentiable function u = ¢(x) and continuous function
g(u) such that f(x) = g(p(x))¢'(z) for any z € (a,b). Then

[t = [ge@)e @i
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3
/x2ex g

Let u = + 1,

then du = 3z%dx

6u
= —+C
3+
2341
e
= C
3 A

Integration

Integration
Techniques of Integration

More Techniques of Integration

/x2em3+1d:c

3

z3+1 z

= d =
fea(3)

= %/ez:sﬂdx?’

_ %/e”“d(aﬁﬂ)
z3+1
e

- —+c
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Integration More Techniques of Integration

/cos4xsinxdx /cos4xsinxdx
Let u = cosz, = /cos4 xd(— cos )
then du = — sin zdx = —/cos4 xd cos T
4 cos® x
= —/u du = — I C
5
5
U
= —+C
5 4F
5
cos’ T
= —+4C
5 +
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Integration More Techniques of Integration

/ dzx / dx
zlnzx zlnzx
Let u = Inx, = /dlna:
Inx
dx
then du = — = Injhz|+C
a7
_ [du
B U
= Infu|+C
= In|lnz|+C
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Integration More Techniques of Integration

/ dx / dx
er +1 er +1

eI
/(“@)dx

Letu=1+4+e"7,

then du = —e *dx = x—/ e
1+e®
e “dx -
= /1+e*f = z—-In(1+¢€")+C
. du
_ _/?
= —Ilnu+C

= —In(l+e*)+C

z—In(l+e*)+C

<
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Integration More Techniques of Integration

/ dx / dx
1+ 1+
Letu:l-i-\/f, = %
_ dx _ Vxdyz
thendufﬁ = Q/W

L ajuch (e
_ 2/(1-%)@ 2y/F — 2In(1 + v/3) + C

= 2u—2lhu+C’

= 2yz—-2In(1++z)+C
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Definite integral

Definition
Let f(z) be a function on [a,b]. A Partition of [a,b] is a set of
finite points

P={xpg=a<z1 <z9<-- <2 =0}

and we define

Axy = xp—xp_1, fork=1,2,...,n
P| = A
1Pl = max {A)
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Integration More Techniques of Integration

Definition

Let f(«) be a function on [a,b]. The lower and upper Riemann sums
with respect to partition P are

L(f, kaAxk, and U(f, P ZMkAxk
k=1

where

my = inf{f(x): xp_1 < < ap}, and My =sup{f(z) : 251 <z < 2}
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Integration
Techniques of Integration

Integration More Techniques of Integration

Axk

=xp 21 e T-1 Tk Tn-1T, =D

Figure: Upper and lower Riemann sum
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Integration More Techniques of Integration

Figure: Upper and lower Riemann sum
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Integration More Techniques of Integration

Definition (Riemann integral)

Let [a,b] be a closed and bounded interval and f : [a,b] — R be a
real valued function defined on [a,b]. We say that f(z) is
Riemann integrable on [a, b] if the limits of £(f, P) and U(f, P)
exist as || P|| tends to 0 and are equal. In this case, we define the
Riemann integral of f(x) over [a,b] by

b
[ f@e = tm £(P) = lim U(£.P).

Note: We say that lim L(f, P) = L if for any £ > 0, there exists

1
[|Pl|—0
d =0(e) > 0 such that if |P|| <, then |L(f,P) — L| <e.
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Theorem

Let f(x) and g(x) be integrable functions on [a,b], a < ¢ < b and k be
constants.

0 [ +oani=[ s+ [ o
o /: kf(z)dz = k/:f(:r)dx

o / " fa)da = / " f@)ds + / ' fa)de

o / " fo)do = - / ’ fa)ie
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Integration More Techniques of Integration

Suppose f(x) is a continuous function on [a,b]. Then f(z) is
Riemann integrable on [a,b] and we have

n—oo

b n
/ f(x)de = lim Z f(xp)Axy
@ k=1
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y = f(z)
>Ax:bia /
flew) -/~ -1-1--r- "

. k
a Tp 1 zr=a+ —(b—a) b
n

Figure: Formula for Riemann integral
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Use the formula for definite integral of continuous function to evaluate

1
/ z2dx
0
V.
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Fundamental theorem of calculus

Theorem (Fundamental theorem of calculus)

First part: Let f(z) be a function which is continuous on [a, b].
Let F : [a,b] — R be the function defined by

F(z) = / " Fydt

Then F(x) is continuous on [a, b], differentiable on (a,b) and

for any x € (a,b). Put in another way, we have

;;/jf(t)dt:f(x) o = (8],
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Theorem (Fundamental theorem of calculus)

Second part: Let f(x) be a function which is continuous on [a, b].
Let F(x) be a primitive function of f(x), in other words, F(z) is a

continuous function on [a,b] and F'(x) = f(x) for any x € (a,b).

Then

b
/ f(@)dz = F(5) — F(a).
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Example

Let f(z) = v/1 — z2. The graph of y = f(z) is a unit semicircle centered at
the origin. Using the formula for area of circular sectors, we calculate

1

rw = [ oa= [T = I

By fundamental theorem of calculus, we know that F'(x) is an anti-derivative
of f(x). One may check this by differentiating F'(z) and get

Fl(z) = 1(\/@7 i L )

+
2 VI—22  1-—2a?

y
- Vit
= f(z)
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3 ot 3
1. / (¢® —4x+5)dz = |= —22%+52
1 L 4 1
3 5 14 5
- 1
0 [ o2a+6 0
2. / 20 gy = }
_3 L 2 | 4
_ e®—1
N 2
1z r 12
3. /12 sec? 3z dz = fan 33:}
0 | 3 0
~ tan3(53) —tan0
_ 1
3
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The fundamental theorem of calculus can be used to evaluate limit of
series of a certain form.

Ol k
nlﬂf;onkzzlf(n>
() ()G o)

/01 f(z)dz
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Find

@ 1 1 1 1
li = I e
0 lim 3 oo n;n;o(nH*Hz* +2n>

im Zizn = lim S T .
n—oo =1 N2 + k2 n—oo \ n2 + 12 n? 4+ 22 n? +n?

(3] limii L hm—( ! + ! +~~+i>
n—oo /N =1 Vn + k "—>°°f vn+1l +/n+2 V2n
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n 1 1 2 1
1. lim = lim —
n—>ookzln+k n—>cx>nk§::11+5
1
1 1
= /0 1+xdx:[ln(1+x)]0
= In2
1 W 1 1 2 1
2. — L = lim - ) ——
nl—{gokzln2+k2 nl—{gonkgll_i_(%p
1
1 1 1
=  Tra? dz = [tan™ z]g
S
4
1 2 1 (L 1
3. lim — = lim —
n_*oo\/ﬁkz::1w/n+l€ nﬁoonlgl 1+k
= de = [2v/1 +
[} i = AT
= 2(v2-1)
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Find lim Y@t D0+2)-@2n)

n—00 n
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Therefore

. 1 2
= lim —In ((1 + ) ( )
n—oo n, n
. 1 2
= lim f(ln (1+ )—i—ln (1 —
n—oo n, n
1
= / In(1 + z)dz
0

= [1+=z)In(l+=z) f:v](l)
= 2ln2-1

Integration More Techniques of Integration

VEo+DHn+2)- (2n) _ 2m2-1 _

nﬁoo n

1.4715.

Q

o |~
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Example (Definite integral and substitution)

g 5
il /m\/:r2—9dx o JiP® = Qdli
& 3
Let u=22—09, 5
etu=u _ % V72 —9d(z? — 9)
When z =3, u =10 ) g .
— 2|2 _0)3
When z =5, u =16 - 3[(x 9)2]3
du = 2zdx = e
3
1 [l6
= f/ Vudu
2 Jo
3716
u?2
0
_ @
-3
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Example (Definite integral and substitution)

dx

2 .
2. SV, / sin /@
0 \/E 9 \/5

Let u = /=, w2
= 2/ sin vz dv/x
When £ =0, u =0 0

,n_2
When z =72, u=mn = 2[-cosVzg
= 2 [— cos V2 — (— cos 0)}
dx
du =

2z = 4

= 2/ sinu du
0

= 2[—cosul;

= 4
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We have the following formulas for derivatives of functions defined by integrals.

0 & [ 1wit= @

b
0 & [ st =—s

d [*@® dv
az ; f(t)dt— f(”)%
d [*@® dv du

i ], JOd=10)g -~ T
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1. This is the first part of fundamental theorem of calculus.

d b
2. = /I F(o)dt

d v(x) ;
3. %/a F(t)dt

d v(x)
. F(t)dt

L[ oo

—f(z)
d [*® dv
(dv g f(t)d> iz
IOk
d v(x) @
T f@)dt + ( )f(t)dt)
% (/ f(t)dtf/ f(t)dt)
dv du
f% - fw e

O

v
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Find F’(x) for the the functions.

Q Fz)= /1 " Vicdt

o F(m):/w sintdt

Q F(z)= Sinw\/1+t4dt
0

(4 ] F(a:):/z e dt
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d xT
1. %\/1 \/ietdt = \/Eez
9 i/ Smtdt _ _sinz
de |, t a5
d sin — d )
P — V1+tidt = 1+ sin*x— sinzx
dz [, dx
= coszy/1+sintz
2
d - 2.2 d _ 2 d
4 9 = @4 2 (2?4
i ). e dt e T e dm( x)
4 2
= 2zxe® +¢€°
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Trigonometric integrals

Useful identities for trigonometric integrals.

2r=1

@ o cos’z+sin
o sec?z=1+tanzx
o csc?z=1+cot’zx

1 2
@ o colp= T

2
. 9 1 — cos2x
o sin“x=——""—
2
. sin 2x
® cosTSNE=——

©@ o coszcosy = i(cos(x+y)+ cos(z —y))

2

o coszsiny = i(sin(z + y) — sin(z — y))
1
2

o sinzsiny = i(cos(z —y) — cos(z + y))
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Techniques

To evaluate
m . n
/ cos ' xsin’ xdx

where m,n are non-negative integers,

@ Case 1. If m is odd, use cosxdx = dsinx. (Substitute u = sinx.)

@ Case 2. Ifn is odd, use sinxzdx = —dcosz. (Substitute u = cosx.)
@ Case 3. If both m,n are even, then use double angle formulas to reduce
the power.
2 1 4 cos 2z
cos’r = ———
2
.2 1 — cos 2z
sin“x = ——
2
. sin 2x
cosrsing = ——
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(1] /tanmdx:ln|secx\+0
Q /cotmdw:1n|sinw|+0

Q /secmdw =In|secz + tanz| + C

Q /cscxd:z: =In|cscz — cotz| + C
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We prove (1), (3) and the rest are left as exercise.

1. /tanxdm = /M
Ccos T

dcoszx
CcoS T

= —lIn|cosz|+C

= In|secz|+C
3. /Secmdw = / sec z(secx + tan z)dx
(secz + tan )
/ (3902 x + sec x tan x)dx
(secz + tan )

d d(tanz + secx)
(secx + tanx)
= In|secz + tanz|+ C
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Techniques

To evaluate
m n
/ sec ' xtan" xdx

where m,n are non-negative integers,
@ Case 1. If m is even, use sec® xdx = dtanx. (Substitute u = tanx.)

@ Case 2. Ifn is odd, use secx tanxdx = dsecx. (Substitute u = secz.)

2

@ Case 3. If both m is odd and n is even, use tan® z = sec> z — 1 to write

everything in terms of sec x.
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Example

Evaluate the following integrals.
(1) /sin2 xdx
o /cos4 3zdx
Q /cos 2z cos xdx

(4 ) / cos 3z sin bxdx
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1. /sin2 rdx = sin 2z +C

[(=52) =3
2 4
2
2. /cos4a:d;r = /(%) dx
2
4
3

1 + 2cos 2z + cos? 23:)
1 dx

sin 2x 1+ cos4x
1 +/ (78 >dx

3z | sin2x i sin 4x L
8 4 32
3. /cos 2xcosxdr = %/(cos 3z + cosx) dr = s1n63:r 4 su;x +C
1 2
4. /cos 3zsinbrdr = 5/(sin 8z + sin 2z) dx = _colsglr - COZ Liq
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Example

Evaluate the following integrals.

. 4

(1) /coswsm xdx
D _ o @

Q /cos z sin” zdx
4 .2

(3] /cos zsin” xdx
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sin® x
1. /cos:csin4 rdr = /sin4 xdsinz = 5 +C
2. /c052x51n3 xdx = 7/COSQZE(1 — cos® z)d cos x
= —/(congc—cos4 x)d cos T
3 5
cos®x  cos’x
= - F C
3 5

. 2
3. /cos4 zsinzdr = / 1+ cos2z sin 2z dx
2 2
1 .2 .2
= 3 / (sm 22 + cos 2x sin 2ac) dx

_ 7/(%) dm+1—16/sin22xdsir12x

1

8

T sindz  sin® 2z c
6 64 ' 48 T
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Example

Evaluate the following integrals.

(1) / sec? z tan” zdx
Q / sec z tan® zdz
(3] / tan® zdz
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tand
1. /secza[:taun2 xdr = /tan2 rdtanz = % +C
2. /seca‘tan3 xdr = /‘can2 xdsecr = /(sech — 1)dsecz
3
= % —secx + C

3. /tan3 zdx = /tanx(sech— 1)dz

/tanmsec2 xdr — /tan:cdx

= /tanmdtanm — In | sec z|

2
= mnTx—hﬂsecxH—C
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Integration by parts

Suppose the integrand is of the form u(z)v'(x). Then we may
evaluate the integration using the formula

/uv/daz = uv — /u/vdx.

The above formula is called integration by parts. It is usually

written in the form
/udv = uv — /vdu.
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Example

Evaluate the following integrals.

1. /xesxdx
2. /x2cosxdx
/m3 In zdz
4. /lnxdm

©o
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3z 1
1. /asesmdm = %/ de3® = mz — g/egmdm

2. /m2cosxdx = /xstinx

9 . 2
= 2 smx—/smxdw
= x2sinx—2/xsinxdx
= x2sinx+2/wdcosx

= x2sinx+2xcosx—2/cosxda¢

= z’sinz + 2z cosz — 2sinz + C
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3. / 23 In zdx

4. / In zdx

More Techniques of Integration

Integration

44 44
z-lnz =z
169

zlnz — /a:dlnx

mlnx—/dm

rzlnx —x+ C
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Evaluate the following integrals.

5. / rsinxdr
0

1
6. / eV dx
0
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T s
5 / rsinxdr = —/ x dcosx
0 0

= f[xcosx]6r+/ cos z dx
0

= —(mwcosm —0) + [sinz]f

=
1 1
6. eV dx =’ \/Eeﬁd\/%
0 0
1
= % \/Edeﬁ
Iy / NG
= 2e—2[eV7]}
= 2e—2(e—1)
=)
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Evaluate the following integrals.

7. /sin_1 xdx

8. /ln(1+x2)dx

9. / sec® zdx

10. /ezsinxdaz
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7. /sirf1 xdx

8. /ln(l + %) dx

xsinflx—/mdsinflx
xsin_lm—/i
V1 —z2
/dl—x

xsin~ x+

V1—12z2
zsintz4+vVI—224+C
xln(1+x2)f/xdln(1+x2)

2
9 z dx
zln(l+ =z )_2/1+m2

9 1
zln(l + =z )—2/(1— T2 dx

zln(l + 2?) — 2z +2tan" 2 4+ C
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9.

3
/ sec” xdx

2 / sec® zdx
/ sec® zdx

/ sec xd tan x

secx tanx — /tan:cdsecac

2
secrtanx — / sec x tan” xdx

sec x tan x — /sec z(sec® & — 1)dx

3
secxtanx — /sec zdx + /sec xdx

secxtanx + / sec zdx

secx tanx + In | sec x + tan z|
B +

C
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10. /egC sinxdr = /sinazdez

= ezsinx—/ezdsinm

= e"sinx — /e’“ cos zdx

= e%sinz — /cos zde”

= ezsinx—ewcos:r—i—/exdcosm

= e€%sinz —e®cosT — /ez sin zdx
Q/ezsinwda: = e%sinxz —e®cosx + C’

/ e’sinzdr =

(e®*sinz — e® cosz) + C

N =
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Reduction formula

For integral of the forms

Iy = /cos" xdz, /sin" xdz, /a:" cos zdz, /m" sin zdzx,
/sec” xdz, /csc” xdz, /m"ezdx, /(lnx)”dﬂc,
/em cos" zdx /ez sin” xzdzx / dz / dz
g Y (,CE2 4L a?)n’ (a2 _ x2)n’

we may use integration by parts to find a formula to express I,, in terms of I},
with k < n. Such a formula is called reduction formula.
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Let
I, = /x" cos zdx

for positive integer n. Prove that

I, =z"sinz +nz" ' cosz — n(n — 1)I,_z, for n > 2
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I, = /x" cos zdx

/ z"dsinx

n . . n

a8 smxf/smxda:

n . n—1 .

T smx—n/m sin xdx
. —1

:r”51n:c—|—n/:r” dcosx

n . =1l n—1
T ST+ nx cos:p—n/cosxdx

. —1 -2
z" sinz + na"” cosx—n(n—l)/m" cos zdx

5 —1
z" sinx +nx" " cosx —n(n — 1)I_2

O
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Example
Let

dx
I,= [ —2
/(x2+a2)"

where a > 0 is a positive real number for positive integer n. Prove that

x 2n — 3

Iy =
2a%(n — 1)(z2 + a?)"—1! + 2a2(n — 1)

In_1, forn >2
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I, :/ dx _ T B /:cd< 1 )
(1,2 4L a2)n (1.2 L a2)n (ZEQ L a2)n
. az 2nx dx
— (x2+a2)n +/ (_,E2 +a2)n+1

DB 3
_ x ) JrQn/(ar +a® —a)dx

(3:2 e a2)n ($2 4L a2)n+1
T dx
= ——— 42 -2 —
et Grear e | G
T
= W + 2nl, — 2na> Int1
a5 2n —1
I 1
e 2na?(z? + a?)” 2na? "
Replacing n by n — 1, we have
a5 2n — 3

In = In—l

2(n —1)a?(z? + a?)71 + 2(n —1)a?
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Alternative proof.

2

i 22 +a?—z
a2 (3:2 +a2)n

1 / 1 z?

— — dx
2 (@2 +a2)" 1 (22 +a2)"
%[n_l _ /736 d(z® + a®)
a

2a2 (z2 4 a?)n

1 + ! /xd !
a2 "t 2(n — 1)a? (z2 4+ a?)n—1

dx

iI n e _ 1 / dx
a2’ "t 2(n — Da?(z2 +a?)”~1  2(n—1)a? (22 4 a?)n1

- Y R —T
2(n —1)a?(z? + a?)" ! (a2 - 2(n— 1)a2) nt

B n 2n —3 I
2(n — 1Da?(x? +a?)»~1t  2(n —1)a? nt

O
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Prove the following reduction formula

q 1 .on—1 n—1 . n—2
/sm" zdx = ——coszsin" "z + sin" ™ xdx
n n

for n > 2. Hence show that

when n is odd

T .
"3 when n is even
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Proof

/sm” zdr = f/sm" zdcos T
1

. n—1 5 o
— cos x sin” x+/cosxds1n" T

c —1 2 . —2
—coszsin” x+(n—1)/cos zsin"” " zdx

—coszsin™ 'z + (n—1) /(1 —sin® ) sin™ 2 zdx

. o =Tl . n—2
n/sm"mda‘ = —coszsin” x+(n—1)/51n" zdx

. 1 . n—1 n—1 . n—2
/ sin"zdx = ——coszsin” x4+ —— [ sin" " xdx
n n
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Hence when n is odd

/ sin” xdx =
0

(SE]

Integration More Techniques of Integration

pusy s
1 8 =1l 2 n—1 2 =%
= [f coszsin” x| + sin" ™ “ zdx
w 0

0
1 £
n — 2 —92
/ sin" ™~ xdx
0

n

(n—l) (n—s)/% nea
sin xdx
n n—2) J

(n—1)-(n—3)- -6-4-2/% .
n(n—2)-7-53 ; sin zdx
(n—1)-(n—3)---6-4-2
n-(n—2 7-5-3
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when n is even

=
2
/ sin” zdx
0

Integration

More Techniques of Integration

(n-1)-(n—3)---7-5-3 (2
n-(n—2)--6-4-2 /0 de

n—-1)-(n—-3)---7-5-3 =
n-n—2)---6-4-2 2
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I, = /xnezdm; I,=z2"€¢ —nl, 1, n>1
I, = /(ln z)"dz; I, =z(lnz)” —nl,—1, n>1
I, = /m sin zdx; I, = —a2"cosz +nx” 'sinx — nn—1)I,—2, n>2
n—1 .
—1
I, = /cosn zdx; [, =28 rTsmT 1 Iy 2, n>2
ne3' "
- -2
I, = [ sec” xzdx; I, = see & tana 4L n I, 2, n>2
n—ll n—1
D, D e® cos" " z(cosz +msinz)  n(n—1)
/ecosxw 1n2+1 +n2+1 2, N|>
© ..m e®sin" " z(sinx —ncosz) n(n-—1)
/esmxm n32—|—1 +n2+1 2, N2>
22" (x +a)2 2na
In:/w”\/ac—l-adx; I, = 2(71_’_3) _2n+3]"_1’ n>1
I, :/ T dz: I — 22"/ + a _ 2na Ina n>1
Jota 2n+ 1 2n + 1
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Expression | Substitution dx Trigonometric ratios
cost) =
a a
x = asind dx = acos 0df sing = %
9 a
A0 [0
/3 > tanf =
a® —x*
cost) =
Va?+ a2
z=atanl | dz = asec®Odf sinf =
et z
a tanf = =
a
a
cost) = i
€T .
x =asecl | dz = asectanfdf 2 _ g2 sinb=
et
a tanf =
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dz .z
O [ e g0
1T

dx 1 _
° /m:atan

1 _
— cos I‘E‘Jrc
x

o/x\/%:hﬂ
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1. Let x = asinf. Then

a2 —22 = a2 —a?sin?6 = acosh

dr = acosfdf

Therefore

acos 6

/d9

0+C

1T

= / L (a cos 6d0)

sin +C

a
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2. Letx = atanf. Then
a2 +22 = a?+d’tan’0 =a’sec’d
dr = asec’0df.
Therefore
1 _ 1 2
/m diU = /a2 SeC2 G(CLSEC 9d9)
= 1 /d@
a
0
= =40
a
= 1 tan ! z +C
a a
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Proof.

3. Let's assume a and x are positive and let = asec. Then

zV/x2 —a? = asecOv/a?sec20 — a2 = a®secltand
dr = asecOtanfdo.

Therefore

1 1
/mdﬁv = /m(asecetanede)
l/d@
a
0

= -+C
a

1 _
= Zes 240
a 7

a . 1
1~ Since cosf = =
z

Note that = cos™ =
sec 6

SRS

O
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Example

Use trigonometric substitution to evaluate the following integrals.

o/mdx
1

o[ =w

0 [ it

0 [Grapte
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Solution
1. Let x =sinf. Then

V1—22 = +/1—sin?0 = cosb

dr = cos6df.

Therefore
/\/1 —x2dr = /00529d9

_ /005229+1d0

sin20 6
= 1 +§+C

sinfcosf sin 'z

= = —+—5—+C

V1I—2?  sin!
_ T 2$+SID2I+C
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Solution

2. Let x = tanf. Then

142> = 1+tan’0=sec’d
dr = sec’0do.

Therefore

(sec® 0d6)

/ 1 de  — / 1
V1+a22? - secx

= / sec 6df

= In|tanf + secl| + C

= In(z++v1+22)+C
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3. Let x = 2sinf. Then

V4d—122 = /4—4sin?0 = 2cosb

dr = 2cos6db.

Therefore

z3 8sin® @
/7*4 — de = / 5 cos 0 (2 cos 6d0)

= 8 / sin® 0d0

= —8/(1 — cos” 0)d cos 0

3
= 8(602 g —cos9> + C

320 /342



Integration
Techniques of Integration

Integration More Techniques of Integration

4. Let x = 3tan6. Then

942> = 9+9tan’0 = 9sec’d
dr = 3sec’6do.
Therefore
1 . 1 > . i .
/mda@ B /8lsec49(35ec ) = 27/COS 0do

1 1 (sin26

- = (cos29+1)d9_5—4( : +9>+C
1 .

= a(cos@sm&—i—&)—kc
1 3 qe 1T

= = : +tan "= | +C
54 (m NoEr 3>

= aF i tan i +C

T 18(9+22) ' 54 3
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Integration of rational functions

Definition (Rational functions)

A rational function is a function of the form

where f(z), g(x) are polynomials with real coefficients with g(z) # 0.

Techniques

We can integrate a rational function R(x) with the following two steps.

@ Find the partial fraction decomposition of R(x), that is, express

B(z + a) C
a(@)+) (x T Gt ar T B T (G TR

where q(z) is a polynomial, A, B,C, a, a,b represent real numbers and k
represents positive integer.

@ Integrate the partial fraction.
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Let R(z) = % be a rational function. We may assume that the leading
coefficient of g(z) is 1.

@ (Division algorithm for polynomials) There exists polynomials q(x), r(x)
with deg(r(z)) < deg(g(z)) or r(z) = 0 such that

r(z)
g(x)

R(z) = q(z) +

q(z) and r(zx) are the quotient and remainder of the division f(x) by
9().

@ (Fundamental theorem of algebra for real polynomials) g(x) can be
written as a product of linear or quadratic polynomials. More precisely,
there exists real numbers a1, ...,Qm,a1,...,0n,b1,...,b, and positive
integers ki, ..., km,l1,...,l, such that

gl@) = (@—a)*"" - (@ —aw) " ((z+a)* +b7)" - ((z+an)? +b)7)""

323/342



Integration
Techniques of Integration

Integration More Techniques of Integration

Partial fractions can be integrated using the formulas below.

da In|z—«a|+ C, ifk=1
o f e : .
(z—a) *m+c, ifk>1
1111(:62—|—0L2)—i—0 ifk=1
°/ zdx )2 2 -
(z? + a?)¥ ! +C, ifk>1

©2(k — 1) (22 + a2)k-1

ltaunflf—i—C’, ifk=1
=4 ¢ k—3 d
x 2k — T
k> 1
2a2(k — 1)@ + @)% | 2a2(k — 1) / @ +a)1 TEZ
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Theorem

f(z)

Suppose
g(z

is a rational function such that the degree of f(x) is smaller

than the degree of g(x) and g(x) has only simple real roots, i.e.,

9(@) = afz — )@ — az) -+ - (& — ax)

for distinct real numbers a1, 2, -+, and a # 0. Then
f@) o) f(a2) - Flaw)
0@~ gla)@—a1)  gla)@—o2) T glaw)@— ar)
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Integration

First, observe that

a(r —on) x—a2)~~~(m)~~~(x—ak)

S

——

where (x — a;) means the factor © — «; is omitted. Thus we have

k
g’ (i) Za(ai—al)(ai_QQ)”'(ai_aj)"'(ai_ak)
= aloy —a1)(oy —Otz)"'(ai/—\ai)"'(ai—ak)

Since g(z) has distinct real zeros, the partial fraction decomposition takes the
form

Ay

T — oy
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Multiplying both sides by g(z) = a(z — a1)(x — a2) - - - (x — ax), we get
s —
flz) = ZAia(m —a)(x—az) - (z—a) - (z— ak)
i=1
Fori=1,2,---  k, substituting * = «;, we obtain
& —
flai) = Z (o —oa)(ey —a2) -+ (aj — i) -+ (g — ax)
= Aia(as — on)(e — a2) - (o — ) -+ (o — k)
= Aig'(ai)
and the result follows. O
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Example

Evaluate the following integrals.

o /m +2x71d
© [minrm®
o [t
Q/ﬁdx

0 [ ia

2+ 1
o /m4+2x2+1d
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Solution

1. By division and factorization x* — x = x(x — 1)(x + 1), we obtain the
partial fraction decomposition

P WS - S - S
a z -1 z+1°

5 — —
x° + 4x 321'2—1—14—536 3

3 —z 3 —x

Multiply both sides by x(x — 1)(x + 1) and obtain

52 —3=A(x—1)(zx+1)+ Bz(z+1) + Cz(z — 1)
= A=3B=1C=-4.

Therefore

5
z° +4x — 3 2 3 1 4
————dx = 1+ — — d

/ 2 T /(m+ +x+x—1 x—&—l)m

3
%+m+3ln|x|+ln|x71|74ln|m+1|+0.

V.
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Solution
2. By factorization 22 + 3z* — 2z = x(x + 2)(2x — 1), we obtain the
partial fraction decomposition

9x — 2 _A B C
z+2 2x—1

203 4 322 — 22«
Multiply both sides by x(x + 2)(2x — 1) and obtain

9z —2 = Az +2)(2z — 1) + Bz(2z — 1) + Cz(x + 2)
= A=1,B=-2,C=2.

Therefore
9x — 2
T 4
/2x3+3x2—2x v

/l— 2 + 2 dx
x x+2 2xr-—1

In|z| —2In|z + 2|+ In|2z — 1| + C.
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Solution

3. The partial fraction decomposition is

-2 A B C
zz—12 (z—-12 z—-1 =z’

Multiply both sides by x(x — 1) and obtain

x> —2=Ax+ Ba(z — 1)+ C(x — 1)?
= A=-1,B=3,C=-2.

Therefore

[=tre - [(Emrsti-t)e

= L+31n|m71\721n|:c\+C’.
z—1
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Integration

4. The partial fraction decomposition is

132

.’I}2

i —1

Therefore

/ 22dx
4t —1

(z2 = 1)(22 +1)

111
2 \x22 -1 2241

a 1 1
= 2e-DE+D 2@ +1)
1 1 1

4z —1) 4(z+1) + 2(22 +1)

/ L = 1 AF ! dx
4(z—1) 4(xz+1) 2x2+1)
1ln\ar:—1|—iln\ar:—|—1|—|—%tan_11:—i—0

4

332/342



Integration
Techniques of Integration

Integration More Techniques of Integration

5. By factorization x* + 4 = (22 +2)? — (22)2 = (22 — 2z + 2)(«? + 22 + 2),
8 2
/Ldlﬂ
zt+4
/ 8z%dx
dx
(2 — 2z + 2)(22 + 2z + 2)
4x
2 d
/ m((IQ 72x+2)(a:2+2x+2)) *
1 1
/236 ( — ) dx
22 —2x+2 22422+ 2

/((xf?:)v2+1 a (x+?§2+1)dz

3 / ( 2z — 1) 2 _ 2(z+1) 2 ) -
- (z—1)24+1 (z—124+1 (z+1)24+1 (z+1)2+1
In(z? — 2z +2) + 2tan"Y(z — 1) — In(2? + 22+ 2) + 2tan " Y(z + 1) + C

333/342



Integration
Techniques of Integration

Integration More Techniques of Integration

6.

2z + 1 "
4+ 222 +1

/ 2xdx dx
= /(m22—|—1)2+/(m22+1)2 2
- /Elg(;:l)lg +/ (52 :11)2 dm_/ (xffﬁy
1 dz 1/xd(x2—|—1)

2+ 1 2+1 2 (z2 +1)2

— —#-i-t -1 _|_1 d ;
T gz R o [ e

= —;—i—tanfla:—l—1 a —1 du
a x2+1 2 \z2+1 2 ) x2+1

T —2 1 1
= =2 4y @
2@ 41 Tt T
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Find the partial fraction decomposition of the following functions.

5 — 3

o -,

3 —x
9z — 2

° 223 + 3z2 — 2x
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Q Forg(z) =2° —z==xz(x—1)(x +1), ¢'(z) = 32°> — 1. Therefore

br—3 -3 5(1) — 3 5(—1) — 3
-z g0z gM-1) g=1+1)
31 4
T oz xz—-1 z+1
@ For g(x) = 22% + 32 — 22 = x(z + 2)(22 — 1), ¢'(z) = 62> + 62 — 2.
Therefore
9z — 2
223 4 322 — 2z
2 9p-2 | 9ad)-2
g0z  g(=2)(=z+2) g(3)2z-1)
1 2 2

ap m+2+23:—1
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t-substitution

To evaluate
/ R(cosz,sinz, tan z)dx

where R is a rational function, we may use t-substitution

t=tan =
= tan —.
2
Then
tanx = i cosT = 1;# sinx = i
1 —¢2 142 R
1 2dt
dr =d(2tan” " t) = e
We have

: 1-¢* 2t 2t 2dt
/R(cosas,smw,tana:)dw:/R(lthQ, T e 17t2> e

which is an integral of rational function.
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Example

Use t-substitution to evaluate the following integrals.
dz
o/ =
+ cosx
sin zdx
S

cosx + sinx

1
° /1+cosa:+sinm
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2
1. Lett:tang,cosx: 14_;, der = 12_51;2. We have
/ da /( 1 ) 2dt / x
- = _ = dt=t+C =tan— +C
1-¢2 2
1+cosx 1+1+§2 1+t 2
_ sin & _2cos%sing+c_ sin
- cos § a 2cos? 5 " 1+cosz
Alternatively
/76& = /7(133 = 1/sec2 Edac
1+cosz 20052%_2 2
x sinx
= tan=-+4+C=——
an2—|— 1+ cosx
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1—t 2t 2dt
2. Lett:tan%,cosx:m,sma::1+t2,daz:1+ We have
/ sin xdx _ / 1_%_’;2 2dt
i - 1— 2
cosx + sinx 1+t2 + 1+t2 1+t

/ ! ¢ _t- dt
T+ "1+  1+2t—1¢2

= tan71t+%ln|1+t2|f%ln|1+2t7t2|+0

_q 1. [1+2t—¢2
= tan t*gln‘w +C
_ 1, |1—¢2 2
= tan ‘t— =1 ==
a 2 n‘1+t2+1+t2 e
1
= % 51n|cosm+s1nac|+0
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Alternatively
sin xdx cosT — sinx
= l————— | da
cos T + sin x cosT + sinx

d(sinz + cosx)
cosx + sinx

N8 l\.')\& N | =

— §1n|cosx+sina:|+0
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1—t2 2t 2dt
3. Lett:tang, cosx = m sinx = T dx = T e We have
2dt
/ dx _ / 1+¢2
i - 1—t2 2t
14 cosx +sinzx 1+ T+ s
dt
N 1+t
= Injl+¢+C

= 1n‘1+tang’+6’

sin x

1+ +C

= In

1+ cosx

+C

_ 1+ cosx + sinx
a 1+ cosz
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