
MATH2040A/B Homework 9 Solution

(Sec 6.1 Q9) Ans :
if 〈x, z〉 = 0 for all z ∈ β, writing x =

∑m
i=1 xizi, then 〈x, x〉 = 0 =⇒ ‖x‖ = 0 =⇒

x = 0.
i.ii. 〈x, z〉 = 〈y, z〉 iff 〈x− y, z〉 = 0, by above, we have x− y = 0.

(Sec 6.1 Q10 and Q12) Ans: We prove only Q12 since Q10 is a special case of Q12. We prove by induction. For
k = 1 it is trivial. Suppose k = n is true, then we have

‖
n+1∑
i=1

aivi‖2 = ‖
n∑

i=1

aivi + an+1vn+1‖2

= ‖
n∑

i=1

aivi‖2 + 2Re〈
n∑

i=1

aivi, an+1vn+1〉+ ‖an+1vn+1‖2

=

n+1∑
i=1

|ai|2‖vi‖2.

(Sec 6.1 Q11) Ans :

‖x+ y‖2 + ‖x− y‖2 = ‖x‖2 + 2Re〈x, y〉+ ‖y‖2 + ‖x‖2 − 2Re〈x, y〉+ ‖y‖2

= 2‖x‖2 + 2‖y‖2.

(Sec 6.1 Q15(a)) If: Without loss the generality, we assume x = ay. Then

| 〈x, y〉 | = | 〈ay, y〉 | = |a|| 〈y, y〉 | = |a|||y||2 = ||x|| · ||y||

Only if: If the identity holds and y 6= 0 (if y = 0, y = 0 · x. The proof is done), we let
a = 〈x,y〉

||y||2 and z = x− ay.

By the equality | 〈x, y〉 | = ||x|| · ||y||, |a| = ||x||
||y|| . Hence ||x||

2 = |a|2||y||2.

Also, we have 〈z, y〉 = 〈x, y〉 − a 〈y, y〉 = 〈x, y〉 − 〈x,y〉
||y||2 ||y||

2 = 0, which implies y and z
are orthogonal.
By Q10, ||x||2 = ||ay + z||2 = ||ay||2 + ||z||2 = ||x||2 + ||z||2. Therefore, z = 0 which
implies x = ay, a = 〈x,y〉

||y||2 .

(Sec 6.1 Q15(b)) Claim: ||x+ y|| = ||x||+ ||y|| if and only if one of the vectors x or y is a non-negative
multiple of the other.
Proof:

||x+ y|| = ||x||+ ||y|| ⇔ ||x+ y||2 = (||x||+ ||y||)2

⇔ 〈x, y〉 = ||x|| · ||y||

Thus we only need to prove 〈x, y〉 = ||x|| · ||y|| if and only if one of the vectors x or y is
a non-negative multiple of the other. And the proof of this is similar with the proof in
part(a)–only need to replace |a| with a.
Claim: ||x1 + x2 · · · + xn|| = ||x1|| + · · · + ||xn|| if and only if there exist one of the
vectors xk ∈ {xi}ni=1 s.t. for ∀i = 1, 2, ..., n, xi a non-negative multiple of xk.
Proof:
If: Check it directly.
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Only: If all of the vectors equal to 0, we choose k = 1 and the proof is done.
We assume xk 6= 0, then

||x1 + x2 · · ·+ xn|| = ||x1||+ · · ·+ ||xn| ⇔ ||x1 + x2 · · ·+ xn||2 = ||x1||2 + · · ·+ ||xn||2

⇔ 〈xp, xq〉 = ||xp|| · ||xq||,∀1 ≤ p, q ≤ n
⇒ 〈xi, xk〉 = ||xi|| · ||xk||,∀1 ≤ i ≤ n

Using xk 6= 0 and 〈xi, xk〉 = ||xi|| · ||xk||,∀1 ≤ i ≤ n, we can prove the desirable result
similarly.

(Sec 6.2 Q2(g)) Ans: Let S′ = {X1, X2, X3} be the obtained orthogonal basis for span(S). By applying
GS process we obtain that

X1 =

(
3 5
−1 1

)
X2 =

(
−1 9
5 −1

)
− 3636

(
3 5
−1 1

)
=

(
−4 4
6 −2

)
X3 =

(
7 −17
2 −6

)
−−7236

(
3 5
−1 1

)
−−7272

(
−4 4
6 −2

)
=

(
9 −3
6 −6

)
.

Hence the orthonormal basis is

β = {16
(

3 5
−1 1

)
, 16
√
2

(
−4 4
6 −2

)
, 19
√
2

(
9 −3
6 −6

)
}

For the matrix A it is just direct checking.

(Sec 6.2 Q2(i) ) Ans: We obtain the orthogonal basis S′ = {X1, X2, X3, X4} by applying GS process,
where

X1 = sin t

X2 = cos t

X3 = 1− 2π2 sin t− 0π2 cos t = 1− 4π sin t

X4 = t− 2 sin t+ 4π cos t− 12(π3 − 8π)π2 − 8(1− 4π sin t)

Hence the orthonomral basis β is

{2π sin t, 2π cos t, 1π − 8π(1− 4π sin t), 12ππ4 − 96
[
t− 2 sin t+ 4π cos t− 12(π3 − 8π)π2 − 8(1− 4π sin t)

]
}

The rest is direct calculation.

(Sec 6.2 Q6) By Theorem 6.6, there exists w ∈ W and y ∈ W⊥ such that x = w + y. Since x 6∈ W ,
y 6=⇀

0 . Then we have

〈x, y〉 = 〈w + y, y〉 = 〈w, y〉+ 〈y, y〉 = ||y||2 > 0.

(Sec 6.2 Q8) We prove it by mathematical induction.
When i = 1, the conclusion holds obviously.
We assume the conclusion holds when i = k, then when i = k + 1,

vk+1 = wk+1 −
k∑

j=1

〈wk+1, vj〉
||vj ||2

vj

= wk+1 −
k∑

j=1

〈wk+1, wj〉
||wj ||2

wj by induction assumption

= wk+1 by 〈wk+1, j〉 = 0,∀j = 1, ..., k

Thus the conclusion also holds when i = k + 1.
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(Sec 6.2 Q14) Since W1,W2 ⊂ W1 + W2, by Q13(a), (W1 + W2)
⊥ is contained in W⊥

1 and W⊥
2 .

Therefore (W1 +W2)
⊥ ⊂W⊥

1 ∩W⊥
2 .

On the other hand, if x ∈ W⊥
1 ∩ W⊥

2 , for all w ∈ W1 + W2, there exists w1 ∈ W1,
w2 ∈ W2, such that w = w1 + w2. Since 〈x,w1〉 = 〈x,w2〉 = 0, we have 〈x,w〉 =
〈x,w1〉+ 〈x,w2〉 = 0. Therefore x ∈ (W1 +W2)

⊥ and hence (W1 +W2)
⊥ =W⊥

1 ∩W⊥
2 .

By applying this with W1 and W2 replaced by W⊥
1 and W⊥

2 respectively, and applying
Q13(c), we have (W⊥

1 +W⊥
2 )⊥ = (W⊥

1 )⊥ ∩ (W⊥
2 )⊥ = W1 ∩W2. By taking orthogonal

complement on both sides and applying Q13(c) again, we have (W1 ∩W2)
⊥ = (W⊥

1 +
W⊥

2 )⊥)⊥ =W⊥
1 +W⊥

2 .

(Sec 6.2 Q17) For all x ∈ V , T (x) ∈ V and thus ||T (x)||2 = 〈T (x), T (x)〉 = 0 by taking y = T (x).
Hence T (x) =⇀

0 for all x ∈ V and T = T0 the zero transformation.
Now we suppose 〈T (x), y〉 = 0 for all x and y in some basis β for V . We want to prove
that this implies 〈T (x′), y′〉 = 0 for all x′ and y′ in V .
Since β is a basis, there exists x1, . . . , xm ∈ β, y1, . . . , yn ∈ β, and scalars a1, . . . , am, b1, . . . , bn
such that

x′ =

m∑
i=1

aixi and y′ =
n∑

j=1

bjyj .

Then we have

〈T (x′), y′〉

=

〈
T

(
m∑
i=1

aixi

)
,

n∑
j=1

bjyj

〉

=

〈
m∑
i=1

aiT (xi),

n∑
j=1

bjyj

〉

=

m∑
i=1

n∑
j=1

aibj 〈T (xi), yj〉

=0.
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