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Sec. 1.6

Q4 Sol:

Q11 Sol:

No, they don’t generate P3(R). What we need to do is to find a polynomial in Ps(R)
but not in span{vi,ve,v3}, where vy = 23 — 222 + 1,09 = 42? — x + 3,v3 = 3z — 2.

Let v = v1 + v + v3 + 1, it is obvious that u € P3(R). We will show that u ¢
span{vy, v, vs}.

If u € span{vi,ve,vs}, we have that vy + ve + v3 + 1 = avy + bvg + cvs.

Comparing the coefficient of 22, we have a = 1.

Since a = 1, minus v; at the both side and comparing the coefficient of z2?, we have
b=1.

Since a = 1 and b = 1, minus v; + v at the both side and comparing the coefficient of
x, we have ¢ = 1.

Thus we have v; +v2+v3+1 = v] +v2+v3, contradiction arises! So u ¢ span{vi,ve,vs}.

Claim 1: {u + v,au} is a basis for V.
Indeed, suppose c1, ¢y are scalars such that ¢;(u + v) + ca(au) = 0. Then

(c1 4+ c2a)u+ civ = 0

and by linear independence of {u,v}, ¢1 + caa = ¢ = 0. As a # 0, on solving, we get
c1 = cg = 0. It implies that {u + v,au} is linearly independent.

Because {u,v} is a basis for V, V is of dimension 2 and by Corollary 2 in Sec. 1.6,
{u+v,au} is a basis for V.

(Alternatively, as V = span{u, v}, Yw € V| 3 scalars ¢, co such that

w=cu+ cov=cou+v)+a (e —e2)(au) (. a#0).

Hence, V' = span{u + v, au}.
To conclude, since {u + v, au} spans V and is linearly independent, it is a basis for V.)

Claim 2: {au,bv} is a basis for V.

Indeed, suppose c1, c2 are scalars such that ¢i(au) + ca(bv) = 0. By linear independence
of {u,v}, cta =ceb=0. Asa # 0and b # 0, ¢; = co = 0. It implies that {au,bv} is
linearly independent.

Because {u,v} is a basis for V, V is of dimension 2 and by Corollary 2 in Sec. 1.6,
{au,bv} is a basis for V.

(Alternatively, as V = span{u, v}, Yw € V, 3 scalars ¢y, ca such that

w = cyu+ cv = (@ tep)(au) + (b7 tep)(bv) (- a#0and b#0).

Hence, V' = span{au, bv}.
To conclude, since {au,bv} spans V and is linearly independent, it is a basis for V.)
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Q12 Sol:

Q14 Sol:

Q15 Sol:

—

Suppose a, b, ¢ are scalars such that a(u 4+ v + w) + b(v + w) 4+ cw = 0. Then
au+ (a+b)v + (a+ b+ c)w=0.

By linear independence of {u,v,w}, a =a+b=a+b+¢=0. Then,a =b=c=0.
Therefore, {u + v + w,v + w,w} is linearly independent.

Because {u,v,w} is a basis for V, V' is of dimension 3 and by Corollary 2 in Sec. 1.6,
{u+v+w,v+w,w} is a basis for V.

(Alternatively, as V = span{u,v,w}, Yz € V, 3 scalars a, b, ¢ such that

r=au+bv+cw=alu+v+w)+(b—a)(v+w)+(c—b—a)w.

Thus, V = span{u + v + w, v + w, w}.
Finally, as {u+v+w,v+w,w} spans V and is linearly independent, it is a basis for V.)

We only need to find the basis for them.
Let B; = {(0,1,0,0,0),(0,0,0,0,1),(1,0,1,0,0),(1,0,0,1,0)}, we will show that Bj is
a basis of Wj.

It is obvious that Bj is linearly independent and B is a subset of W;. Then we show
that B; generates Wj.

Vv € Wy, we denote v by (ag + ag,a2,as,aq,as). Then we have v = a2(0,1,0,0,0) +
a5(0,0,0,0,1) 4+ a3(1,0,1,0,0) + a4(1,0,0,1,0) € span(B)
So Bj is a basis of W7 and the dimension of Wy is 4.

Let By ={(0,1,1,1,0),(1,0,0,0,—1)}, we will show that Bs is a basis of Wj.
It is obvious that By is linearly independent and Bs is a subset of W5. Then we show
that B; generates Ws.

Vv € Wa, we denote v by (a1, as,as,as,—a1). Then we have v = ay(0,1,1,1,0) +
a1(1,0,0,0,—1) € span(B3)
So Bs is a basis of W5 and the dimension of W5 is 2.

Vi,j € {1,...,n}, denote by E¥ the n x n matrix in which the only nonzero entry is a 1
in the ith tow and jth column.

Method 1: Choose [ € {1,...,n}. Vi € {1,...,n} with i # [, define H' = F% — E".
It is clear that the set

B={E":ije{l,.,n},i#jJU{H :ic{l,..n}i#l}

is a subset of W. We claim that it is indeed a basis for W.
Suppose A € W. Then T scalars a;;’s for 4, j € {1,...,n} such that A =372, 37", ai; EY.

As A has trace zero, i.e. > . a; =0, or equivalently, ay = —> 1", i1 Qi Then
n—1
A= Z aijE” + Z akka.
1<i,j<n k=1,k#l
i#]



It implies that B spans W.
Suppose a;;’s for i,j € {1,...,n} with i # j and by, ...,b—1,b141, ..., by are scalars such
that

n
Y agET+ Y bHF=0.
1<i,j<n k=1,k#l
i£]

By comparing entries of matrices on both sides, we have a;; = 0 Vi,j € {1,...,n} with
i #j,and by =0 Vk € {1,...,n} with k # [. Thus, B is linearly independent.
All in all, we see that B is a basis for W. Hence,

dimW =n(n —1)+ (n —1) =n? — 1.

Method 2: Vi € {1,....n — 1}, define H! = % — pithitl
It is clear that the set

B={EY:ije{l,..,n},i#jJU{H :ic{l,...,n—1}}

is a subset of W. We claim that it is indeed a basis for W.
Suppose A € W. Then Jscalars a;;’s for i, j € {1,...,n} such that A = > ; Z?:1 ai; B,
We want to find scalars by, ..., b,_1 such that

n n—1
> aiET = bpHY =0 EM 4 (b = b1)E® + -+ (bpo1 — bp2) E" VT — by BT
=1 =1

As A has trace zero, ie. Y ; ;a; = 0, we can solve the above equation to get by =
Ele a;; for any k € {1,...,n — 1}, whence

n—1 k
A= Z az-jEij + Z (Z aii> H*.
1<i,j<n k=1 \=1
i#j
It implies that B spans W.
Suppose a;;’s for 4, j € {1,...,n} with ¢ # j and by, ..., b,—1 are scalars such that

-1
Z aijEij + nz kak =0.
k=1

1<i,j<n

i#]

By comparing entries of matrices on both sides, we have a;; = 0 Vi,j € {1,...,n} with
i # 7, and

by =bo—by=-=byp1—byp2=-b,1=0,

whence by =0 Vk € {1,...,n — 1}. Thus, B is linearly independent.
All in all, we see that B is a basis for W. Hence,

dimW =n(n—1)+ (n—1) =n* - 1.
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Q20 Sol:
(a)Proof:

(b)Proof:

Q23 Sol:

If n = 0, the proof is trivial.

If n > 0, S must contain a vector vy, s.t. v; is not the 0 vector. If not, S = {0} then S
can not generate V. Contradiction arises!

Let S1 = vy, then we construct S, from S,_1,Vp > 2:

If S is not the subset of span{S,—_1}, we assume v, € S but v, ¢ span{S,—1} . Let
Sp = Sp_l U {’Up}.

If S is the subset of span{Sy_1}, we stop this scheme.

Claim 1:For the constructed Sy,Vk € ZT, S}, is linearly independent.

when k = 1, the claim holds since S; = {v1} and vy # 0.

We assume the claim holds when k < ¢ — 1, so when k = ¢, we have S; = S;—1 U {vg},
Sg—1 is linearly independent and vy ¢ span{S;—1}.

So by theorem 1.7, we have Sy is linearly independent. Thus the claim also holds when
k=gq.

Therefore the claim holds for Vk € ZT by induction.

Claim 2: We can not get the set Si, k > n + 1.

If the claim 2 doesn’t hold, there is a set S, 41 such that 5,11 is linearly independent
and it contains n + 1 vector.

So the dimension of span{Sp+1} is n+1. And span{Sp+1} is the subspace of V' because
Snt1 C S C V. However, the dimension of V' is n which is small than the dimension of
its subspace. That is impossible. So the claim 2 holds.

From claim 2, we assume that the constructing scheme stops at Sg, i.e. .S is the subset
of span{Si}. So V = span{S} C span{Si}. Thus V = span{Si} since S, C V.

Since V' = span{Sy} and S, is linearly independent, so Sy is a subset of S that is a basis
of V.

If S only contains k vectors, kK < n — 1.

From (a), we can find a subset of S that is a basis of V. We denote it by U. Then the
dimension of V' is not larger that n — 1 since U is a basis of V and U contains n — 1
vector at most. Contradiction arises!

Thus S contains at least n vectors.
i. We claim that v € W7 is a necessary and sufficient conditions such that

Note that as {vi,...,v5} C {v1,..., vk, v}, Wi C Wy (by a lemma in Lecture Note 3).
(=) Suppose v € Wy. Clearly, v; € span({v1,...,vx}) = W1 Vi € {1,...,n}. Then
{v1, ..., v, v} C span({v1,...,v;}) and thus (by the same lemma in Lecture Note 3)

Wy = span{vy, ..., v, v} C span(span({v1,...,vx})) = span({vi, ..., v }) = W1

Therefore, W7 = W5 and thus dim Wy = dim Whs.
(<) Suppose dim Wy = dim Ws. Because Wy C Wy and dim Wy = Wy, Wy = Wo
(by a theorem in Lecture Note 3). Thus, v € {v1, ..., vk, v} C Wo = W7.
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ii. We claim that in case dim(W7) # dim(W3), dim(Ws) = dim(W;) + 1.
We first treat the special case when {v1, ..., vx } is a basis for W;. Then dim(W;) = k.
Now, it suffices to show that {v1,..., v, v} is a basis for Wy, implying dim(Ws) =
k+ 1.
By definition, {v1, ..., v, v} spans Ws. Suppose c, ..., ¢y are scalars such that

cov +civr + -+ v = 0.

Then cpv = — 2?21 civ; € Wi. By the hypothesis that dim(W;) # dim(Ws) and
(a), v € W1. As W is a vector space, cov € W only if ¢y = 0, whence Y ;" | c;v; = 0.
By linearly independence of {v1,...,vx}, ¢ = -+ = ¢ = 0. Therefore, {vy, ..., vg, v}
is linearly independent. Hence, {v1, ..., vg, v} is a basis for W.

Now we go to the general case when vy, ..., v are arbitrary vectors of Wj. Choose
any basis {v],...,v}, } for Wi. Then Wy = span({v], ..., v}, }). We want to show that
Wy = span{v}, ...,v},,v} so that we can apply the argument in the special case by
replacing vy, ..., vy by vi, ..., v},

Since vi,...,vy € Wi = span{v},..., v}, {v1,...,08,v} C span{v],...,v},, v} and
hence Wy C span({v, ..., vj,,v}). Similarly, because v}, ..., v, € Wi = span{vi, ..., v},
{v1, .., v, v} C span{vi,...,vg, v} and hence span({v{,...,v},,v}) C Wa. We are
done.

Q24 Sol: Let S = {f®)(2)},k =0,1,...,n. We show that S is linearly independent. Since f(z) is
a polynomial of degree n, thus f*) (x) is a polynomial of degree n — k.
Assume that Zzzoakf(k) () = 0, we show that ay = 0,,k = 0,1,...,n thus S is linearly
independent.
When k = 0, comparing the coefficient of ", we have ag = 0.
We assume that a; = 0 holds when £ < p — 1. The when k = p, we have
Se_arf®) (z) =0
Comparing the coefficient of " ~P, we have a, = 0 since the degree of f (k) (x)isn—p—1
at most when k£ > p + 1.
Thus ar = 0 also holds when k = p.
Therefore a; must be equal to 0 by induction, £ = 0,1, ..., n.
So S is linearly independent and contains n + 1 vectors.
Since the dimension of P,(R) is n+1, we get that S is a basis of P,(R) by corollary 2(b).
The assertion of Q24 is true by the definition of basis.

Q26 Sol: Let V ={f € P,(R) : f(a) = 0}.
Method 1: Vi € {1,...,n}, define g; € P,(R) by gi(z) = 2' — a*. We claim that
{g1,...,9n} is a basis for V and therefore the dimension of V' is n.

First, notice that Vi € {1,...,n}, gi(a) = a’ — a* = 0 and hence g; € V.
Second, suppose ci, ..., ¢, € R such that ¢1g1 + -+ - ¢pgn = 0. Then

cnx™ +-cix — (epa” + -+ c1a) = 0.

By comparing coefficients, we get ¢; = --- = ¢, = 0. {g1, ..., gn} is linearly independent.
Third, fix f € V. 3eg,...,cn € R such that f(z) = Y1 ca’. Then Y1 jca’ =0, or
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equivalently, co = — Y, c;a’. We have
f(x) =cpz" + -+ cax+co = cpgi(x) + - - - + c191(x).

Thus, span({g1,...,gn}) =V
Eventually, we see that {g1,...,gn} is a basis for V and dim V' = n.

Method 2: Vi € {1,...,n}, define g; € P,(R) by gi(r) = (z — a)’. We claim that
{g1,..,9n} is a basis for V and therefore the dimension of V is n.

First, notice that Vi € {1,...,n}, gi(a) = (x — a)* = 0 and hence g; € V.

Second, suppose ci,...,¢, € R such that c¢1g1 + -+ cpgn = 0. Putting y = x — a, the
equality becomes ¢,y + - -+ c1y = 0, which yields ¢, = --- = ¢1. {g1, ..., gn} is linearly
independent.

Third, fix f € V. Define h(z) = f(z + a) € Pp(R). Then 3co,...,cp € R such that
h(z) =37 ,cx'. Note that ¢g = h(0) = f(a) = 0. Then

f(x) x - a Zczgz

Thus, span({g1,...,gn}) =V
Eventually, we see that {g1,...,gn} is a basis for V and dim V' = n.

Method 3: Vi € {1,...,n}, define g; € P,(R) by gi(x) = (x — a)z*"!. We claim
that {g1,...,gn} is a basis for V and therefore the dimension of V' is n.

First, notice that Vi € {1,...,n}, g;(a) = (a — a)a’~! = 0 and hence g; € V.

Second, suppose ci, ..., ¢, € R such that ¢1g1 + -+ - ¢pgn = 0. Then

enx” + (ep-1 — acn)xn_1 + (cp—2 — acn_l):c"_2 + -4 (1 —acg)r —ac; = 0.

So ¢y = cCp_1 —acy, = Cp—g —acp—1 = --- = ¢1 — ace = —acy = 0. On solving, we get
cp=-+=c¢,=0.{g1,..., gn} is linearly independent.

Third, fix f € V. Since f(a) = 0, by Factor Theorem, 39 € P,_i(R) such that
f(z) = (z — a)g(z). Then 3Jey,...,c, € R such that g(z) = S I, c;z'!, whence
flx)=>"" cigi(z) € span({g1, ..., gn}). Thus, span({g1,...,gn}) =V

Eventually, we see that {g,...,gn} is a basis for V and dim V' = n.

Method 4*: (This is an approach to prove the statement assuming that we have
already learnt knowledges in Sec. 2.1 - 2.4.)

Define T': P,_1(R) — P,(R) by g(x) — (z —a)g(z). T is in fact a map from P,_;(R)
to V since Vg € P,,_1(R), T(g)(a) = (a —a)g(a) = 0. ¥Vf,g € P,_1(R), Ve € R,

T(f+9)(x) = (x—a)(f+9)(x) = (z —a)f(x) + (x — a)g(x) = T(f)(z) + T(9)(z),
T(cf)(x) = (z —a)(cf)(x) = c(z — a) f(x) = T (f)(x).
Therefore, T : P,,_1(R) — V is a linear transformation.
If g(x) € Py—1(R) and (x — a)g(x) = T(g)(x) = 0, then clearly g(x) = 0. Hence,

N(T) = {0}. By Theorem 2.4 in Sec. 2.1, T is one-to-one. Yf(x) € V, by Factor The-
orem dg(z) € P(R) such that f(z) = (z — a)g(z) and by comparing degrees, we know
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Q31 Sol:

that g(z) € Pp—1(R), whence f = T'(g). Therefore, T is also onto. As T is one-to-one
and onto, it is invertible.
Finally, by a lemma in Sec. 2.4 (see page 101), dimV = dim P,,_1(R) = n.

Method 5*: (This is an approach to prove the statement assuming that we have
already learnt knowledges in Sec. 2.1, especially properties of null spaces)
Define T': P,(R) — R by f — f(a). Note that Vf,g € P,,(R), Vc € R,

T(f+9)=(f+9)a) = fla) +g(a) =T(f) +T(9),
T(cf) = cf(a) = cT'(f).

Hence, T is a linear transformation from P,(R) to R. Now we see that the null space
N(T') of T is equal to V. On the other hand, Ve € R, T'(f.) = f.(a) = ¢, where f. € P,(R)
is the constant polynomial with constant term c. Therefore, the range R(T) of T' is equal
to R. Now we apply Dimension Theorem (Theorem 2.3 in Sec. 2.1):

nullity (7") + rank(7") = dim P, (R),
.dimV + dimR = dim P, (R),
S.dimV =P, (R) —dimR = (n+1) — 1 =n.

(a) As Wi N Wy C Wy, dim(W; N W) < dim(Ws3) = n by Theorem 1.11, Sec 1.6.

(b) We assume S; = {v1, ..., v} is a basis of Wi and So = {u1, ..., u,} is a basis of Wh.
It is obvious that S = 57 U Sy generates W + Ws.
By theorem 1.9, we get a subset S’ of S such that S’ is a basis of Wy + Wa.
S’ contains m +n vectors at most since S = 51 U Sy contains m + n vectors at most.
Therofore, dim(W; + Wa) <m+n .



