MMAT5390: Mathematical Image Processing Assignment 4

Due: April 25 2022 before 12pm

Please give reasons in your solutions. You can use the hints directly without proving them.

1. Given $N^2 \times N^2$ block-circulant real matrices D and L, $N \times N$ image g and fixed parameter $\varepsilon > 0$, the constrained least square filtering aims to find $f \in M_{N \times N}$ that minimizes:

$$E(f) = [L\mathcal{S}(f)]^T [L\mathcal{S}(f)]$$

subject to the constraint:

$$[\mathcal{S}(g) - D\mathcal{S}(f)]^T [\mathcal{S}(g) - D\mathcal{S}(f)] = \varepsilon,$$

where S is the stacking operator.

- (a) Prove that D is diagonalizable by $W = W_N \otimes W_N$, where $W_N(n,k) = \frac{1}{\sqrt{N}} e^{2\pi j \frac{nk}{N}}$, i.e. $W^{-1}DW$ is diagonal, and find its eigenvalues in terms of DFT(h) where $DS(\varphi) = S(h * \varphi)$ for any $\varphi \in M_{N \times N}(\mathbb{R})$. (hints: You may use $W^{-1} = \overline{W_N} \otimes \overline{W_N}$ and $D(x, y) = h(mod_N(x) mod_N(y), \lfloor \frac{x}{N} \rfloor \lfloor \frac{y}{N} \rfloor)$.)
- (b) Given that the optimal solution f that solves the constrained least square problem satisfies $[\lambda D^T D + L^T L] \mathcal{S}(f) = \lambda D^T \mathcal{S}(g)$ for some parameter λ . Find DFT(f) in terms of DFT(g), DFT(h), DFT(p) and λ , where $L\mathcal{S}(\varphi) = \mathcal{S}(p * \varphi)$ for any $\varphi \in M_{N \times N}(\mathbb{R})$. (hints: You may use $W^{-1}\mathcal{S}(f) = N\mathcal{S}(\hat{f})$, where $\hat{f} = DFT(f)$.)
- 2. Verify that for any $N \times N$ circulant matrix

	$\int c_0$	c_{N-1}	c_{N-2}	• • •	c_1
	c_1	c_0	c_{N-1}	• • •	c_2
C =	c_2	c_1	c_0	• • •	c_3
	÷	÷	÷	۰.	: [
	$\langle c_{N-1} \rangle$	c_{N-2}	c_{N-3}	• • •	c_0

 $UC\overline{U}$ is diagonal, where U is the $N \times N$ DFT matrix $U = (U(x, \alpha))_{0 \le x, \alpha \le N-1}$ with $U(x, \alpha) = \frac{1}{N}e^{-2\pi j\frac{x\alpha}{N}}$. Thus find the eigenvalues of C in terms of $c_0, c_1, \ldots, c_{N-1}$.

3. Given a noisy image g(x, y), we consider the image denoising algorithm to obtain a clean image f(x, y) through minimizing the following energy functional:

$$E(f) = \int_{\Omega} \{ |f(x,y) - g(x,y)|^2 + \lambda \|\nabla f(x,y)\|^2 \} \, dx \, dy$$

where λ is a constant parameter. Derive an iterative scheme to minimize E(f) in the continuous setting.

4. Consider the following curve evolution model for image segmentation. Let $\gamma_t := \gamma_t(s) : [0, 2\pi] \to D$ be a closed curve in the image domain D. We proceed to find γ that minimizes:

$$E_{snake,2}(\gamma) = \int_0^{2\pi} \frac{1}{2} \|\gamma'(s)\|^2 \, ds + \alpha \int_0^{2\pi} \frac{1}{2} \|\gamma''(s)\|^2 \, ds + \beta \int_0^{2\pi} V(\gamma(s)) \, ds,$$

where V is the edge detector, α and β are fixed positive parameters.

Derive the gradient descent iterative scheme to minimize $E_{snake,2}$ in the continuous setting.