
1.

f̂(k) =

∫ 1

−1
x2e−ikxdx =

2 sin k

k
+

4 cos k

k2
− 4 sin k

k3

2. By standard derivation, we have the general solution

u(x, t) = F (x− t) +G(x+ t)

with the additional condition ut(x, 0) = 0 (since we are only finding one

particular solution), where F (x) = G(x) = u(x,0)
2 .

If you are curious about the deduction, you may refer to
https://www.math.ubc.ca/~feldman/m267/pdeft.pdf

So one particular solution to the original PDE is

u(x, t) = e−|x−t| + e−|x+t|

3. By direct substitution, for fixed j

n−1∑
k=0

cke
i 2jkπn =

1

n

n−1∑
k=0

n−1∑
t=0

fte
−i 2tkπn ei

2jkπ
n

=
1

n

n−1∑
t=0

ft

n−1∑
k=0

ei
2kπ
n (j−t)

= fj

4.

(̂f ∗ g)(k) =
1

n

n−1∑
j=0

(

n−1∑
k=0

fkgj−k)e−i·
2jkπ
n

= n · 1

n

n−1∑
j=0

fj · e−i·
2jkπ
n · 1

n

n−1∑
j=0

gj · e−i·
2jkπ
n

= n · f̂(k)ĝ(k)

5. (a)

1

N

N−1∑
m=0

N−1∑
n=0

f̂(m,n)e−2πj
pm+qn
N =

1

N2

N−1∑
m=0

N−1∑
n=0

N−1∑
k=0

N−1∑
l=0

f(k, l)e2πj
m(k−p)+n(l−q)

N

= f(p, q)

(b) Let ur,s be the entry at (r+1)-th row and (s+1)-th column of the

matrix U , here 0 ≤ r, s ≤ N − 1. Then from f̂ = UfU we can easily
get

ur,s =
1√
N
e2πj·

rs
N
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(c) Let u∗m,n be the entry at (m+1)-th row and (n+1)-th column of the
matrix U∗, here 0 ≤ m,n ≤ N − 1. Then

u∗m,n = un,m =
1√
N
e−2πj·

mn
N

Then it is easy to verify that UU∗ = U∗U = I

6. (a) By Taylor’s expansion, we get

u(xj+2) = u(xj) + 2hu′(xj) + o(2h)

u(xj−2) = u(xj)− 2hu′(xj) + o(2h)

so we deduce that

u′(xj) =
u(xj+2)− u(xj−2)

4h
+ o(1)

Then we can say that when we choose n is sufficiently large (or h is
sufficiently small), D1u can approximate u′, or D1 can approximate
d
dx .
Similarly,

u(xj+4) = u(xj) + 4hu′(xj) +
16h2

2
u′′(xj) + o(h2)

u(xj−4) = u(xj)− 4hu′(xj) +
16h2

2
u′′(xj) + o(h2)

so

u′′(xj) =
u(xj+4)− 2u(xj) + u(xj−4)

16h2
+ o(1)

Then we can say that when we choose n is sufficiently large (or h is
sufficiently small), D2u can approximate u′′, or D2 can approximate
d2

dx2

(b) By the structure of D1u, it can be verified that

(D1

−−→
eikx)j =

eikxj+2 − eikxj−2

4h

So it suffices to show that

eikxj+2 − eikxj−2

4heikxj

is independent of the index j, and this value is exactly the eigenvalue

of D1 corresponding
−−→
eikx.

eikxj+2 − eikxj−2

4heikxj
=
eik·(xj+2h) − eik·(xj−2h)

4heikxj

=
ei·2kh − ei·(−2kh)

4h

=
i sin(2kh)

2h
.
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So
−−→
eikx is the eigenvector of D1 corresponding the eigenvalue i sin(2kh)

2h
for k = 0, 1, ..., n− 1.
Similarly,

eikxj+4 − 2eikxj + eikxj−4

16h2eikxj
=
eik·(xj+4h) − 2eik·xj + eik·(xj−4h)

16h2eikxj

=
ei·4kh − 2 + ei·(−4kh)

16h2

=
cos(4kh)− 1

8h2
.

So
−−→
eikx is the eigenvector ofD2 corresponding the eigenvalue ( i sin(2kh)2h )2 =

cos(4kh)−1
8h2 for k = 0, 1, ..., n− 1.

(c) Since
−−→
eikx are the eigenvectors of D1 corresponding the distinct eigen-

values, we get that they are linearly independent. So the set contains
n linearly independent vectors forms a basis.

(d) By (b) we get D1

−−→
eikx = λk

−−→
eikx, D2

−−→
eikx = (λk)2

−−→
eikx

so

aD2u + bD1u = aD2(

n−1∑
k=0

ûk
−−→
eikx) + bD1(

n−1∑
k=0

ûk
−−→
eikx)

= a

n−1∑
k=0

(λk)2ûk
−−→
eikx + b

n−1∑
k=0

λkûk
−−→
eikx

=

n−1∑
k=0

(a(λk)2 + bλk)ûk
−−→
eikx

= f

=

n−1∑
k=0

f̂k
−−→
eikx

Since {
−−→
eikx}n−1k=0 is a basis, comparing the coefficients leads to the

result that we want to prove.
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