Lecture 4:

Recap: Let M be a smooth surface. · A Riemannian metric g associated to M is defined: For VPEM, gp: TpM × TpM → IR defines an inner product $\ni \langle \vec{v}, \vec{w} \rangle = g_p(\vec{v}, \vec{w})$ for all $\vec{v}, w \in T_pM$ imer product (From Linear Algebra, at each PEM, gp is associated to a 2x2 SPD matrix (gup) gup) and in every Smooth local coordinates (X', X²), $g_p = \sum_{i,j=1}^{n} g_{ij}(p) dx^i dx^j$ gij's are smooth)

surface Mis associated to an isothermal · Any metric coordinates. Xa+iYd That's, let {(Ud, Zd) JdEA be the conformal atlas for M. Then: $g = e^{\lambda(z_{d})} \left(dx_{d}^{2} + dy_{d}^{2} \right)$ is a Riemann surface. · Any metric surface • $S_1 \xrightarrow{f} S_2$ f is conformal iff lz lup I is conformal for all Za, was f = wpo fozz / B

Basic theories of planar conformal maps Theorem: (Riemann mapping) Suppose DCC is a simply-Connected domain on the complex plane, the boundary 2D has more than one point, Zo ED is an arbitrary interior point. Then, there exists a unique conformal mapping $\phi : D \rightarrow \Delta$ trom D to the unit disk A, such that $\phi(z_0) = 0$ and φ'(zo) >0, <u>Remark</u>: If $f: S \rightarrow ID$ and $g: S \rightarrow ID$ are disk conformal parameterization of S, then: gof is a conformal

Surface harmonic map: theories and computation
Basic theoretical background
1. Let f: M → IR. The differential of f is defined as:
dfp(v) = Dvf for ∀v ∈ TpM
diff(8(t)) where df 8(t) = v
Under the coordinate chart (x',x²) around p,
dfp:=
$$\sum_{i=1}^{2} \frac{2f}{2x_i}(p) dx^i$$

2. (planar harmonic function) Let $\Omega \subseteq IR^2$ and Let $u: \Omega \rightarrow IR$.
U is savid to be a harmonic function if : $\Delta U = 0$

Harmonic map and energy minimization
Consider:
$$E(u) \stackrel{def}{=} \int_{\mathcal{R}} \langle \nabla u, \nabla u \rangle dx dy$$

Suppose u minimizes $E(u)$, then:
 $0 = \frac{d}{d\epsilon} \Big|_{\epsilon=0} E(u+\epsilon h) = \frac{d}{d\epsilon} \Big|_{\epsilon=0} \int_{\mathcal{R}} \langle \nabla u + \epsilon \nabla h, \nabla u + \epsilon \nabla h \rangle dx dy$
 $= 2 \int_{\mathcal{R}} \langle \nabla u, \nabla h \rangle dx dy$
Fixing the boundary, we have $h=0$ on $\vartheta \Omega$.
Integration by part gives : $0 = 2 \int_{\mathcal{R}} h \Delta u dx dy$ for $\forall h$
 $\ln d_{\vartheta} \Omega = g$ (Boundary condition)

(MB_11)

2

More concrete definition of harmonic map between Riemann surfaces

$$\frac{\text{Definition}}{\text{Definition}} \text{ Let } f: \mathcal{M} \Rightarrow IR \text{ be a smooth function on } \mathcal{M}.$$
The Riemannian gradient ∇fp at $p \in \mathcal{M}$ is defined \Rightarrow
for $\forall p \in \mathcal{M}$, $\forall \vec{v} \in T_p \mathcal{M}$, ∇fp is a tangent vector at p
satisfying: $\langle \nabla fp, \vec{v} \geq g = D_{\vec{v}}f.$
In any smooth coordinate (X', X^2) ,
 $\nabla fp = \sum_{i,j=1}^{2} g^{ij}(p) \frac{\Im f}{\Im x^i}(p) \frac{\Im}{\Im x^j}|_p$ where (Check)
 (g^{ij}) is the inverse of (g_{ij}) ,

Remark: Let
$$f: S \rightarrow \Omega \subseteq IR^2$$
. f is a harmonic map
if: f minimizes $E(f) = \int_{S} \langle \nabla f_p, \nabla f_p \rangle g$
(Harmonic energy)
How about harmonic energy between Riemann surfaces?
Let $f: (M,g) \rightarrow (N,h)$ be a homeomorphism.
Define: $E(f) = \frac{1}{2} \int_{M} II d \int II_{R}^2 Wg$ be the harmonic energy

Where W_{g} is the area measure on M defined by the metric g $\|df\|_{h}^{2} \stackrel{2}{=} \frac{def}{\sum_{i=1}^{2}} h_{f(p)} (df_{p}(e_{i}), df_{p}(e_{i})),$ $\{e_{i}\}$ is an orthonormal basis on $T_{p}M$

In local coordinate
$$(x', x^2)$$
 on M and (y', y^2) on N ,
 $\|df_{\mathfrak{p}}\|_{\mathfrak{h}}^2 = \sum_{\substack{i,j=1 \ \alpha,\beta=1}}^2 j^i (p) h_{\alpha\beta}(f(p)) f_i^{\alpha} f_j^{\beta}$ where
 $f_i^{\alpha} \det_{\mathfrak{f}} \frac{\partial}{\partial x_i} (y^{\alpha} \circ f) , f_j^{\beta} \det_{\mathfrak{f}} \frac{\partial}{\partial x_j} (y^{\beta} \circ f)$ (x', x') (y', y^2)
and $Wg = \int |g| dx' dx^2$ and $|g| = determinant of$
 (g_{ij})
 $\underline{Definition}$: The homeomorphism $f: M \rightarrow N$ is a harmonic map
if f minimizes the harmonic energy.

Important fact:
Theorem: Suppose a harmonic map
$$\varphi: (S,g) \rightarrow \Omega$$
 satisfies:
D Ω is convex ;
D Ω is convex ;
D the restriction of $\varphi: \Im S \rightarrow \Im Q$ on the boundary is homeomorphic
Then: U is diffeomorphic in the interior of S.
Proof: By regularity theory of harmonic maps, we get the
smoothness of the harmonic map. Assume $\varphi: (x,y) \rightarrow (u,v)$
is not homeomorphic, then there is an interior point $p \in \Omega$,
the Jacobian matrix of φ is degenerated at p.
 $i \exists a, b \in IR$ (not all zero) such that:
 $a \forall u(p) + b \forall v(p) = D$

(049,L) ------

By
$$\Delta u = \Delta v = 0$$
, the auxiliary function
 $f(q) = a u(q) + b v(q)$ is also harmonic.
 $f(q) = a u(q) + b v(q)$ is also harmonic.
 $f(q) = 0$ $\therefore p$ is a saddle point of f .
Consider $T = \xi q \in S | f(q) = f(p) - \varepsilon \}$ (level set of
 f near p)
 T has two connected components, intersecting ∂S at
 4 points.
But Ω is a planar convex domain, $\partial \Omega$ and the line
 $au + bv = const$ have two intersection points. By
 α ssumption, $\varphi|_{\partial S}$ is a homeomorphism. Contradiction.
 $u + bv = const$ homeomorphism. $Contradiction$.

Theorem: If
$$f: S \rightarrow \Omega \leq IR^2$$
 and $g = S \rightarrow \Omega$ are
both harmonic map satisfying $f|_{\partial S} = g|_{\partial S} = h$,
then: $f = g$,

$$\frac{Computation of discrete harmonic map}{Let M be a triangulated surface. A piecewise linear functionor map is a function/map on M such that it is linearon each triangular face.
$$\frac{Theorem:}{Given a piecewise linear function f: M \rightarrow IR, then}{The harmonic energy of f is given by:}$$

$$E(f) = \frac{1}{2} \sum_{(V_i, V_j) \in M} Wij (f(V_i) - f(V_j))^2 \quad where}{V_k}$$

$$Wij = \cot O_{ij}^k + \cot O_{ji}^k$$

$$V_i \bigvee_{V_k}^{N_k} V_j$$$$

Definition: (Laplace operator) The discrete Laplacian
$$\Delta p_L$$
 on o
piecewise Linear function f is
 $\Delta p_L f(v_i) = \sum_{\substack{v_i, v_j \} \in M}} W_{ij} (f(v_j) - f(v_i))$
 $W_{i, v_j \} \in M}$
Hence, if f minimizes the discrete harmonic energy then:
 $\Delta p_L f \equiv 0$
Remark: The motivation of this definition is by taking
the derivative of the discrete harmonic energy:
 $E(f) = \frac{1}{2} \sum_{\substack{v_i \in M}} W_{ij} (f(v_j) - f(v_i))^2$
 $E(f) = \frac{1}{2} \sum_{\substack{v_i \in M}} W_{ij} (f(v_j) - f(v_i))^2$
Recall: The Euler-Lagrange eqt of $\int_M |\nabla f|^2$ is given by
 $\Delta f = 0$.

Computational Algorithm for Disk Harmonic Maps

Input: A topological disk M;

Output: A harmonic map $\varphi: M \to \mathbb{D}^2$

- Construct boundary map to the unit circle, $g : \partial M \to \mathbb{S}^1$, g should be a homeomorphism;
- Ompute the cotangent edge weight;
- **③** for each interior vertex $v_i \in M$, compute Laplacian

$$\Delta \varphi(\mathbf{v}_i) = \sum_{\mathbf{v}_j \sim \mathbf{v}_i} w_{ij}(\varphi(\mathbf{v}_i) - \varphi(\mathbf{v}_j)) = 0;$$

• Solve the linear system, to obtain φ .