Lecture 3:

Recap

Gauss-Bonnet Theorem

Theorem: (Gauss-Bonnet) let M be a compact closed surface.
\n
$$
\int_{M} k dA = 2\pi \frac{\chi(M)}{Euler characteristic}
$$
\n(integer depending on the topology)

Discrete Gauss-Bonnet Theorem

Theorem For an oriented discrete triangulated surface M,
\n
$$
\sum_{J_i} k(v_i) = 2\pi \chi(M)
$$
\nwhere {v_i} is the collection of vertices, $k(\vec{v}_i)$ is the discrete
\nGaussian curvature defined as: $k(v_i) = 2\pi - \sum_{j,k} \theta_i^{jk}$ $v_i d \ge M$
\nand $\chi(M) = |V| + |V| - |E|$
\n $\lim_{t \to 0} \frac{1}{k} e^{j\pi i} e^{j\pi i} e^{j\pi i}$

$$
\frac{P_{\text{vol}}}{V_{\text{rel}}}\text{ Let } M = (V, E, F) \text{ If } M \text{ is closed, then:}
$$
\n
$$
\sum_{v_i \in V} K(v_i) = \sum_{v_i \in V} \left(2\pi - \sum_{j \neq k} \theta_i^{jk} \right) = \sum_{v_i \in V} 2\pi - \sum_{v_i \in V} \sum_{j \neq k} \theta_i^{jk}
$$
\n
$$
= 2\pi |V| - \pi |F|
$$
\n
$$
\therefore M \text{ is closed } \therefore 3|F| = 2|E|
$$
\n
$$
\therefore \chi(M) = |V| + |F| - |E| = |V| + |F| - \frac{\lambda}{2}|F|
$$
\n
$$
= |V| - \frac{\lambda}{2}|F|
$$
\n
$$
\therefore \sum_{v_i \in V} K(v_i) = 2\pi \chi(M).
$$

 $\frac{1}{\sqrt{1-\frac{1}{c}}}$

╰ τ.

Assume M has a boundary 3M.
\nLet V₀ = interior Vertex
$$
net
$$

\n V_1 = boundary net
\n E_0 = interior edge set
\n E_1 = boundary edge set
\n E_1 = boundary edge set
\n $\begin{cases}\nE_1 = \text{boundary} & \text{edge set} \\
1 & \text{otherwise}\n\end{cases}$ \n $\begin{cases}\n|E_1 = |E_0| + |E_1| \\
|E_1| = |V_1|\n\end{cases}$
\nEach interior edge is adjacent to one face, we have:
\n $3|F| = 2|E_0| + |E_1| = 2|E_0| + |V_1|$ (V $|\frac{1}{2}|V_1|$)
\n \therefore X(M) = |V| + |F| - |E| = |V_0| + |V_1| + |F| - |E_0| - |E_1|
\n \therefore X(M) = |V| + |F| - |E| = |V_0| + |V_1| + |F| - |E_0| - |E_1|
\n $= |V_0| + |F| - |E_0|$
\n \therefore X(M) = |V| - $\frac{1}{2}$ (F| + $\frac{1}{2}$ |V_1).

$$
\sum_{\substack{v_i \in V_0}} k(v_i) + \sum_{v_j \in V_1} k(v_j) = \sum_{v_i \in V_0} (2\pi - \sum_{\substack{j \in V_1}} \theta_i^{j\frac{1}{2}}) + \sum_{v_i \in V_1} (\pi - \sum_{j \neq i} \theta_i^{j\frac{1}{2}})
$$

= 2\pi |\nu_0| + \pi |\nu_1| - \pi |\Gamma|
= 2\pi (|\nu_0| - \frac{1}{2} |\Gamma| + \frac{1}{2} |\nu_1|)
= 2\pi \chi(M)

DOLLE COMPANY

 \mathbf{r}

Basic theories of compact Riemann surface
\nDefinition: (Harmonic function) Suppose
$$
u: D \ni R
$$
 is a real
\nvalued function defined on $D \subseteq C$. If $u \in C^2(D)$ and for
\nany $z \in D$, $z = x+iy$, we have:
\n $\Delta u(z) = \frac{\partial^2 u}{\partial x^2} (z) + \frac{\partial^2 u}{\partial y^2} (z) = 0$ for $\forall z$.
\nThen: u is a harmonic function.
\nDefinition: (Holomorphic function) A function $f: C \rightarrow C$,
\n $(x,y) \mapsto (u,v)$ is holomorphic if:
\n
$$
\begin{cases}\n\frac{\partial u}{\partial x}(x) = \frac{\partial v}{\partial y}(x) \\
\frac{\partial u}{\partial y}(x) = -\frac{\partial v}{\partial x}(z) \\
\frac{\partial u}{\partial y}(x) = -\frac{\partial v}{\partial x}(z)\n\end{cases}
$$
\n
$$
(\text{Cauchy - Riemann } e \, \frac{e+1}{6})
$$

BALLEY BARRAS

Remark:
$$
\int
$$
Denote $dz = dx + idy$, $d\overline{z} = dx - idy$
\n $\frac{\partial}{\partial z} = \frac{1}{2} (\frac{\partial}{\partial x} - i \frac{\partial}{\partial y}), \frac{\partial}{\partial \overline{z}} = \frac{1}{2} (\frac{\partial}{\partial x} + i \frac{\partial}{\partial y})$
\nThen: $\Delta = 4 \frac{\partial^2}{\partial z \partial \overline{z}}$ (Check!)
\nAlso, f is holomorphic if $\frac{\partial f}{\partial \overline{z}} = 0$. (Check!)
\n• If a holomorphic function is bijective and f⁻¹ is
\nalso holomorphic, then f is called biholomorphic or
\nconformal.

BRACK COMPANY

Definition: (Riemann surface) A Riemann surfacesis a 2-dim
manifold M with an atlas
$$
\{(U_{\alpha}, Z_{\alpha})\}
$$
, such that $\{U_{\alpha}\}$ is an open covering, $M \subset UU_{\alpha}$ and $Z_{\alpha}: U_{\alpha} \to C$ is a homeomorphism
from U_{\alpha} to an open set in C, $Z_{\alpha}(U_{\alpha})$. Also, if U_{\alpha} and $U_{\beta} \neq \emptyset$,
then: $Z_{\beta} \cdot Z_{\alpha}^{-1} : Z_{\alpha}(U_{\alpha} \cap U_{\beta}) \to Z_{\beta}(U_{\alpha} \cap U_{\beta})$
is biholomorphic (conformal.
 $\{(U_{\alpha}, Z_{\alpha})\}$ is called the conformal atlas of S.

Remark: Given two conformal at
$$
[U_x, Z_x]
$$
 and $\{(V_{\beta}, Z_{\beta})\}$ if their union is also a conformal at $[U_{\beta}, Z_{\beta}]$ if their union is also a conformal at $[U_{\beta}, Z_{\beta}]$.

\nSo $S = \{U_x, Z_x\}$ is equivalent to $\{(V_{\beta}, Z_{\beta})\}$.

\nEach equivalent class of conformal at $[U_{\beta}, Z_{\beta}]$.

\nGiven a smooth manifold M , we can equip not given by M with a Riemannian metric $g = (g_{ij})$, which gives the inner product in the tangent span of $[P(M)]$,

\n $g_{ij} = \langle J_i, J_j \rangle g$.

\nIts inverse matrix is (g^{ij}) , satisfy $\sum_{j=1}^{n} g_{ij} g^{jk} = \sum_{i=k}^{n} \{1\}$.

$$
Suppose M has a Riemannian metric g. Then weveguirethat ou each chart of $\{U_{\alpha}, \xi_{\alpha}\}\$:

$$
g = e^{2\lambda(\xi_{\alpha})} dz_{\alpha} d\overline{z}_{\alpha} = e^{2\lambda(\xi_{\alpha})} (d x_{\alpha} + d y_{\alpha}^{2})
$$
$$

Recall : give
$$
\vec{v} = v_1 \frac{2}{3x} + v_2 \frac{2}{3y} \in T_P M
$$

\n $\vec{\omega} = w_1 \frac{2}{3x} + w_2 \frac{2}{3y} \in T_P M$
\nThen: $(d x_d^2 + dy_d^2)(\vec{v}, \vec{\omega}) = v_1 w_1 + v_2 w_2$
\n \ln this case, we say the local parameters associated to
\n $\{ (u_x, z_x) \}$ are isothermal coordinates.

Proposition: Given a metric surface with a differential atlas
$$
\{(u_a, z_a)\}
$$
. If all local coordinates are isothermal coordinates, then $\{(u_a, z_a)\}$ is a conformal structure.

Kemark: Any metric surface has an isothermal coordinates Iheorem: Any metric surface is a Riemann surface.

Definition: (Conformal mapping) Suppose M and M are two
\nRiemann surfaces. A homeomorphism
$$
f: M \rightarrow M
$$
 is called a
\nconformal mapping, if Vp $\in M$, $\tilde{p} = f(p) \in M$, for any local
\nparameter chart (U, φ) and $(\tilde{u}, \tilde{\varphi})$, $z = \varphi(p)$, $\tilde{z} = \tilde{\varphi}(\tilde{z})$,
\n $M \xrightarrow{f} \tilde{M}$
\n $\downarrow \varphi$
\n $\tilde{\varphi} \circ f \circ \varphi^{-1} \circ \tilde{z}$
\nUnder local parameters
\n $\tilde{z} = \tilde{\varphi} \circ f \circ \varphi^{-1}$ is the
\n*Remark:* Our goal is to compute conformed map from
\n*Complicated Surtau M* (Brain surface) to D (such
\nas sphere, 2D rectangles, etc.)

Remada: If
$$
\exists f : M \Rightarrow M
$$
, then M and M are called
\nconformally equivalent.

\n• Let $f: C \Rightarrow C$ be a holomorphic function, $\omega = f(\epsilon)$.

\nThen: $d\omega = \frac{2f}{2\epsilon} d\epsilon + \frac{2f}{2\epsilon} d\overline{\epsilon}$

\nand $a\omega$ or $d\omega d\overline{\omega} = |\frac{\partial f}{\partial \epsilon}|^2 d\overline{\epsilon} d\overline{\epsilon}$

\nof $e^{2}+d\overline{\epsilon}$

\nand $a\overline{\epsilon}$ and $\overline{\epsilon}$

\nof $e^{2}+d\overline{\epsilon}$

\nand $e^{2}+d\over$

DRAW COLOR