Lecture 1: Basic mathematical concept

Brief introduction on:

- 1. Topological surface
- 2. Riemannian surface

Topological surface . Interested in the topology / genus of the surface ONLY. · not equipped with a metric measuring distance

Riemannian surface · Equipped with a metric measuring distance · Topology / genus can be discovered by Gauss-Bonnet Theorem. 2-29 $\int_{M} \frac{k}{T} dA = 2\pi X(M)$ Fuller char. Graussian curvature

Figure: Check whether all loops on the surface can shrink to a point.

All oriented compact surfaces can be classified by their genus g and number of boundaries b. Therefore, we use (g, b) to represent the topological type of an oriented surface S.

INR.LA

DARTER

Definition: Let
$$\gamma_0$$
, γ_1 be two loops through p . The product
of two loops is defined as:
 $\gamma_0(zt) = \begin{cases} \gamma_0(zt) & 0 \le t \le \frac{1}{2} \\ \gamma_1(zt-1) & \frac{1}{2} \le t \le 1 \end{cases}$
The loop inverse is defined as:
 $\gamma_1^{-1}(t) = \Im(1-t)$

Definition: (Intersection index)

$$\sum_{\substack{\gamma_2(\tau) \\ \gamma_1(t)}} n(q)$$
 $\sum_{\substack{\gamma_1(t) \\ q}} \sum_{\substack{\gamma_1(t) \\ q}}$

Figure: Algebraic intersection number

Algebraic Intersection Number Homotopy Invariance

Suppose γ_1 is homotopic to $\tilde{\gamma}_1$, then the algebraic intersection number

$$\gamma_1 \cdot \gamma_2 = \tilde{\gamma}_1 \cdot \gamma_2.$$

OVALLA' E

Proof: Exercise

Definition (Canonical Basis)

Suppose S is a compact, oriented surface, there exists a set of generators of the fundamental group $\pi_1(S, p)$,

$$G = \{[a_1], [b_1], [a_2], [b_2], \cdots, [a_g], [b_g]\}$$

such that

$$a_i \cdot b_j = \delta_i^j, a_i \cdot a_j = 0, b_i \cdot b_j = 0,$$

where $a_i \cdot b_j$ represents the algebraic intersection number of loops a_i and b_j , δ_{ij} is the Kronecker symbol, then G is called a set of canonical basis of $\pi_1(S, p)$.

Universal covering space
Definition (Covering Space) Let S and Š be topological
Spaces. A continuous map
$$p: \tilde{S} \rightarrow S$$
 is a covering map if:
(1) For each ges, \exists neighbourhood \mathcal{U} of q such that
 $p^{-1}(\mathcal{U}) = \bigcup \widetilde{\mathcal{U}}_i$ is a disjoint union of open sets $\widetilde{\mathcal{U}}_i$
(2) $p|_{\widetilde{\mathcal{U}}_i} = \widetilde{\mathcal{U}}_i \rightarrow \mathcal{U}_i$ is a homeomorphism for $\forall i$.
Then: \widetilde{S} is called a covering space.
If \widetilde{S} is simply-connected, then \widetilde{S} is called a universal
covering space.
 $p^{-1}(\mathcal{U}) = \bigcup \widetilde{\mathcal{U}}_i$

Definition: (Deck Transformation) The automorphism of \tilde{S} , $T = \tilde{S} \rightarrow \tilde{S}$, is called a deck transformation if they satisfy pot = p. All deck transformations form a group, the covering group, and denoted as Deck(S)

Deck(S) Space of translations from one fundamental domain to another.

Figure: Universal Covering Space

Figure: Universal Covering Space of a genus two surface. Deck (S) = Space of Mobins transformations.

Smooth manifold

Definition (Manifold)

A manifold is a topological space M covered by a set of open sets $\{U_{\alpha}\}$. A homeomorphism $\phi_{\alpha} : U_{\alpha} \to \mathbb{R}^{n}$ maps U_{α} to the Euclidean space \mathbb{R}^{n} . $(U_{\alpha}, \phi_{\alpha})$ is called a coordinate chart of M. The set of all charts $\{(U_{\alpha}, \phi_{\alpha})\}$ form the atlas of M. Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then

$$\phi_{\alpha\beta} = \phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$$

is a transition map.

If all transition maps $\phi_{\alpha\beta} \in C^{\infty}(\mathbb{R}^n)$ are smooth, then the manifold is a differential manifold or a smooth manifold.

Definition (Tangent Vector)

A tangent vector ξ at the point p is an association to every coordinate chart (x^1, x^2, \dots, x^n) at p an n-tuple $(\xi^1, \xi^2, \dots, \xi^n)$ of real numbers, such that if $(\tilde{\xi}^1, \tilde{\xi}^2, \dots, \tilde{\xi}^n)$ is associated with another coordinate system $(\tilde{x}^1, \tilde{x}^2, \dots, \tilde{x}^n)$, then it satisfies the transition rule

$$\widetilde{\xi}^i = \sum_{j=1}^n \frac{\partial \widetilde{x}^i}{\partial x^j}(p) \xi^j.$$

A smooth vector field ξ assigns a tangent vector for each point of M, it has local representation

$$\xi(x^1, x^2, \cdots, x^n) = \sum_{i=1}^n \xi_i(x^1, x^2, \cdots, x^n) \frac{\partial}{\partial x_i}.$$

 $\{\frac{\partial}{\partial x_i}\}$ represents the vector fields of the velocities of iso-parametric curves on M. They form a basis of all vector fields.

$$\frac{N}{\begin{pmatrix}x,y\\x_1,x_2,x_3\\x_1,x_2,x_3\\x_1,x_2,x_3\\x_2,x_3\\x_3,x_2,x_3\\x_4 \in \mathbb{C} \rightarrow \mathbb{S}^2 \setminus \{N\} \text{ defined by:} \\
\varphi(x,y) = (X_1, X_2, X_3) = \left(\frac{2x}{(1+x^2+y^2)}, \frac{2y}{(1+x^2+y^2)}, \frac{-1+x^2+y^2}{(1+x^2+y^2)}\right) \\
\varphi^{-1}(X_1, X_2, X_3) = (X, y) = \left(\frac{X_1}{(1-X_3)}, \frac{X_2}{(1-X_3)}\right)$$

ONDUS -

 $\frac{\partial}{\partial x} = \frac{\partial \Phi}{\partial x} = \frac{2}{(1+x^2+y^2)^2} (1-x^2+y^2) - 2xy, 2x)$ $\frac{\partial}{\partial y} = \frac{\partial \phi}{\partial y} = \frac{2}{(1+x^2+y^2)^2} (-2xy, 1+x^2-y^2, 2y)$ Note that: $\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial x} \rangle = \frac{4}{(1+\chi^2+y^2)^2}$ Angle preserving! $\langle \frac{\partial}{\partial y}, \frac{\partial}{\partial y} \rangle = \frac{4}{(1+\chi^2+\chi^2)^2}$ $\langle \frac{3x}{3}, \frac{3y}{3} \rangle = 0$

Definition (Push-forward)

Suppose $\phi: M \to N$ is a differential map from M to $N, \gamma: (-\epsilon, \epsilon) \to M$ is a curve, $\gamma(0) = p, \gamma'(0) = \mathbf{v} \in T_p M$, then $\phi \circ \gamma$ is a curve on N, $\phi \circ \gamma(0) = \phi(p)$, we define the tangent vector

$$\phi_*(\mathbf{v}) = (\phi \circ \gamma)'(0) \in T_{\phi(p)}N,$$

as the push-forward tangent vector of **v** induced by ϕ .

Integration on surface

Definition: Suppose UCM is an open set of a 2-dim manifold
M, and
$$\phi: U \rightarrow \Omega \subset IR^2$$
 is a chart. Then:

$$\int_{U} f dA = \int_{\Omega} f \cdot \phi^{-1} \int \overline{EG - F^2} du dv$$
where $E = (\phi^{-1})_{U} \cdot (\phi^{-1})_{U}$, $F = (\phi^{-1})_{U} \cdot (\phi^{-1})_{V}$, $G = (\phi^{-1})_{V} \cdot (\phi^{-1})_{V}$
Definition: Choose a partition of unity $\{Y_i: U_i \rightarrow IR\}_{i \in I}$ Such
that $\bigcup U_i = M$, $Y_i(p) \geq 0$ for $\forall i$ and $\sum_i Y_i(p) \equiv 1$ for $\forall p \in M$
Then: $\int_{M} f dA = \sum_i \int_{U_i} (\Psi_i f) \cdot \Phi_i^{-1} \int \overline{EG - F^2} du dv$
where $\Phi_i: U_i \rightarrow \Omega_i$ is a chart.

Gauss-Bonnet Theorem
Definition: Let
$$p \in M$$
 and $\vec{v} \in T_p M$ (tangent plane at p).
Define: $S_p(\vec{v}) = -D\vec{v}N$, where \vec{N} is the normal direction
of M at p. Then: $S_p : T_p M \rightarrow T_p M$ is a linear
operator, called the shape operator.
The Gaussian curvature at p is defined as :
 $K = det(S_p)$.
Theorem: (Gauss-Bonnet) Let M be a compact closed surface.
 $\int_M K dA = 2\pi \chi(M)$
Euler characteristic
(integer depending on the topology)

Discrete Gauss-Bonnet Theorem

Theorem: For an oriented discrete triangulated surface M,

$$\sum_{\substack{i \\ i \\ i \\ i}} k(v_i) = 2\pi \chi(M)$$
where {vi} is the collection of vertices, $k(v_i)$ is the discrete
Gaussian curvature defined as: $k(v_i) = 2\pi - \sum_{jk} \partial_j^{jk}$ $v_i \neq 2M$
and $\chi(M) = |v| + |\tilde{F}| - |E|$
 $\# of edges$

