Lecture 1: Basic mathematical concept

Brief introduction on:

- 1. Topological surface
- 2. Riemannian surface

/ • interested in the topology ^I genus of the surface ONLY. . not equipped with ^a metric measuring

Topological surface Riemannian surface . Equipped with a metri measuring distance . Topology I genus can be with discovered by Gauss - 3_{onnet} Theorem. 2-2g
" $\int_{M} k dA = 2\pi \int_{N}^{N(M)}$ T Euler char . Gaussian curvatu

Figure: Check whether all loops on the surface can shrink to a point.

Toyo, La P

All oriented compact surfaces can be classified by their genus g and number of boundaries b. Therefore, we use (g, b) to represent the topological type of an oriented surface S.

Figure: Handle detection by finding the handle loops and the tunnel loops. Remark: Topological surfaceScan be determined by the first
"Romotopy group.
Suppose gES is a base point, all oriented loop can be clas homotopy group . ill oriented loop can be classifie by homotopy and hence form ^a homo topic class . All homotopic classes form the fundamental group/first homotopic $\begin{array}{ccc} \overline{c} & \overline{c} & \overline{c} & \overline{c} & \end{array}$ Denote it by π , (S, 8).

Definition: Let
$$
\gamma
$$
, $\gamma_2 : [0,1] \rightarrow S$ be two curves. A homotopy connected, γ , and $\gamma_2 : [0,1] \rightarrow S$ is a continuous mapping $F: [0,1] \times [0,1] \rightarrow S$.

\nSuch that: $F(0, t) = \gamma_1(t)$ and $F(1, t) = \gamma_2(t)$.

\nY, is said to be homotopic to γ_2 if there exists a homotopy between them.

\nDefinition: A closed curve (loop) through P is a curve

\nSuch that $\gamma_0 = \gamma_1 = \gamma_2 = 0$.

\nLemma: Homotopy relation is an equivalence relation.

\nLemma: Homotopy class of a loop γ is denoted by [8].

\nRemark: The homotopy class of a loop γ is homotopic to γ .

\n(1) $\gamma_1 \in [Y]$, then: γ_1 is homotopic to γ .

$$
\frac{\text{Definition: } Let \space 0, \space 0, \space 0, \text{ be two loops through } p. \text{ The product of two loops is defined as: } \space \gamma_{0}(2t) = \begin{cases} \space \gamma_{0}(2t) & 0 \leq t \leq \frac{1}{2} \\ \space \gamma_{1}(2t-1) & \frac{1}{2} \leq t \leq 1 \end{cases}
$$
\n
$$
\text{The loop inverse is defined as: } \space \gamma^{-1}(k) = \text{R}(1-t)
$$

Definition: (Intersection index)

\nSuppose
$$
3, and 3z
$$
 intersects at 8 . That's, $3, (1x) = 3z(1) = 8$.

\nThe algebraic intersection is not a set of 8 is:

\n
$$
s = \frac{3z}{2}
$$
\nThe algebraic intersection is not a set of 8 and $8z$ is defined as:

\n
$$
s = \frac{3z}{2}
$$
\nFind $(\sqrt{1}, \sqrt{2}, 8)$

\n
$$
s = \frac{3z}{2}
$$
\nFigure: Algebraic intersection number of 1 and 1 and 1 are not a set of 1 and 1 and 1 are not a set of 1 and 1 and 1 are not a set of 1 and 1 and 1 are not a set of 1 and 1 and 1 are not a set of 1 and 1 and 1 are not a set of 1 and 1 and 1 are not a set of 1 and 1 and 1 are not a set of 1 and 1 and 1 are not a set of 1 and $$

Figure: Algebraic intersection number

Algebraic Intersection Number Homotopy Invariance

Suppose γ_1 is homotopic to $\tilde{\gamma}_1$, then the algebraic intersection number

$$
\gamma_1\cdot \gamma_2=\tilde{\gamma}_1\cdot \gamma_2.
$$

DOMESTIC

Proof: Frercise

Definition (Canonical Basis)

Suppose S is a compact, oriented surface, there exists a set of generators of the fundamental group $\pi_1(S, p)$,

$$
G = \{ [a_1], [b_1], [a_2], [b_2], \cdots, [a_g], [b_g] \}
$$

such that

$$
a_i \cdot b_j = \delta_i^j, a_i \cdot a_j = 0, b_i \cdot b_j = 0,
$$

where $a_i \cdot b_i$ represents the algebraic intersection number of loops a_i and b_i , δ_{ij} is the Kronecker symbol, then G is called a set of canonical basis of $\pi_1(S,p)$.

Universal covering space

\nDefinition (Covring Space) Let S and S be topological

\nSpaces. A continuous map
$$
p: S \rightarrow S
$$
 is a covering map if:

\n(1) For each $g \in S$, \exists neighborhood U of g such that

\n $p^{-1}(u) = \bigcup_{i} \widetilde{u}_i$ is a disjoint union of open sets u_i

\n(2) $p|_{\widetilde{u}_i}: \widetilde{u}_i \rightarrow u_i$ is a homeomorphism for Vi.

\nThen: S is called a covering space.

\nIf S is simply connected, then S is called a universal

\nCovering space

\nCovering space

\n $v \rightarrow w$

Definition : (Deck Transformation) The automorphism of S , $T = S \rightarrow S'$, is called a deck transformation f they satisty pol=p. I lieg of land the group, the covering group, and denoted as Deck (5) .

Deck(S) u Space of translations from one fundamental domain to another.

Figure: Universal Covering Space

Figure: Universal Covering Space of a genus two surface. Deck (S) = Space of Mobins transformations.

Smooth manifold

Definition (Manifold)

A manifold is a topological space M covered by a set of open sets $\{U_{\alpha}\}.$ A homeomorphism $\phi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$ maps U_{α} to the Euclidean space \mathbb{R}^n . $(U_{\alpha}, \phi_{\alpha})$ is called a coordinate chart of M. The set of all charts $\{(U_{\alpha}, \phi_{\alpha})\}$ form the atlas of M. Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then

$$
\phi_{\alpha\beta} = \phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})
$$

is a transition map.

If all transition maps $\phi_{\alpha\beta} \in C^{\infty}(\mathbb{R}^n)$ are smooth, then the manifold is a differential manifold or a smooth manifold.

Definition (Tangent Vector)

A tangent vector ξ at the point p is an association to every coordinate chart (x^1, x^2, \dots, x^n) at p an n-tuple $(\xi^1, \xi^2, \dots, \xi^n)$ of real numbers, such that if $(\tilde{\xi}^1, \tilde{\xi}^2, \cdots, \tilde{\xi}^n)$ is associated with another coordinate system $(\tilde{x}^1, \tilde{x}^2, \cdots, \tilde{x}^n)$, then it satisfies the transition rule

$$
\tilde{\xi}^i = \sum_{j=1}^n \frac{\partial \tilde{x}^i}{\partial x^j}(p)\xi^j.
$$

A smooth vector field ξ assigns a tangent vector for each point of M, it has local representation

$$
\xi(x^1,x^2,\cdots,x^n)=\sum_{i=1}^n\xi_i(x^1,x^2,\cdots,x^n)\frac{\partial}{\partial x_i}.
$$

 $\{\frac{\partial}{\partial x_i}\}$ represents the vector fields of the velocities of iso-parametric curves on M . They form a basis of all vector fields.

BALLEY BARRA

$$
\int_{(x,y)}^{x_1, x_2, x_3} \frac{x}{(x,y)} dx
$$
\n
$$
\int_{(x,y)}^{(x_1, x_2, x_3)} \frac{x}{(x,y)} dx
$$
\n
$$
\int_{(x,y)}^{(x,y)} f(x, y) dx = (x_1, x_2, x_3) = \left(\frac{2x}{1 + x^2 + y^2}, \frac{2y}{1 + x^2 + y^2}, \frac{-1 + x^2 + y^2}{1 + x^2 + y^2} \right)
$$
\n
$$
\int_{(x,y)}^{(x,y)} f(x, y, y) dx = (x, y) = \left(\frac{x_1}{1 - x_3}, \frac{x_2}{1 - x_3} \right)
$$

DOLLE

 $\frac{\partial}{\partial x} = \frac{\partial \phi}{\partial x} = \frac{2}{(1 + x^2 + y^2)^2} (1 - x^2 + y^2, -2xy, 2x)$ $\frac{2}{30} = \frac{3\phi}{30} = \frac{2}{(1+x^2+y^2)^2} (-2xy)(1+x^2-y^2, 2y)$ Note that: $\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial x} \rangle = \frac{4}{(1+x^2+y^2)^2}$ Angle
Preserving! $<\frac{\partial}{\partial y}, \frac{\partial}{\partial y}>=\frac{4}{(1+x^2+y^2)^2}$ $\langle \frac{2}{3} \times \frac{2}{9} \rangle = 0$

Definition (Push-forward)

Suppose $\phi : M \to N$ is a differential map from M to N, $\gamma : (-\epsilon, \epsilon) \to M$ is a curve, $\gamma(0) = p$, $\gamma'(0) = v \in T_pM$, then $\phi \circ \gamma$ is a curve on N, $\phi \circ \gamma(0) = \phi(p)$, we define the tangent vector

$$
\phi_*(\mathbf{v})=(\phi\circ\gamma)'(0)\in\mathcal{T}_{\phi(\rho)}N,
$$

as the push-forward tangent vector of **v** induced by ϕ .

Integration on surface

Definition: Suppose
$$
U \subset M
$$
 is an open set of a 2-dim manifold
\n M , and $\phi: U \rightarrow \Omega \subset \mathbb{R}^2$ is a chart. Then:
\n
$$
\int_{U} \int dA = \int_{\Omega} f \cdot \phi^{-1} \sqrt{EG - F^2} d\mu d\nu
$$
\nwhere $E = (\phi^{-1})_{u} \cdot (\phi^{-1})_{u}$, $F = (\phi^{-1})_{u} \cdot (\phi^{-1})_{v}$, $G = (\phi^{-1})_{v} \cdot (\phi^{-1})_{v}$
\n
$$
\frac{\partial^{2}f_{\text{inition}}}{\partial U_{\text{in}}}
$$
 Choose a partition of unity $\{\psi_{i}: U_{i} \rightarrow \mathbb{R}^{2}\}$ is a such that $\bigcup_{i} U_{i} = M$, $\psi_{i}(p) \ge 0$ for $\forall i$ and $\sum_{i} \psi_{i}(p) \equiv 1$ for $\forall p \in M$
\nThen:
$$
\int_{M} f dA = \sum_{i} \int_{U_{i}} \psi_{i} f dA
$$

$$
= \sum_{i} \int_{\Omega_{i}} \psi_{i} f dA
$$

$$
= \sum_{i} \int_{\Omega_{i}} (\psi_{i} f) \cdot \phi_{i}^{-1} \sqrt{EG - F^2} d\mu d\nu
$$

\nwhere $\phi_{i}: U_{i} \rightarrow \Omega_{i}$ is a chart.

Gauss-Bonnet Theorem

\n**Gefiniform**

\nLet
$$
pe M / and \vec{v} \in T_{P}M
$$
 (Hangent plane at p).

\nDefine: $S_{P}(\vec{v}) = -D\vec{v} N$, where N is the normal direction of M at p. Then: $S_{P}: T_{P}M \rightarrow T_{P}M$ is a linear operator, called the shape operator.

\nThe Gaussian curvature at p is defined as:

\n $K = det(S_{P})$.

\nTheorem: (Gauss-Bonnet) Let M be a compact closed surface.

\n $\int_{M} K dA = 2\pi \frac{\chi(M)}{\chi(M)}$

\nIntegr depending on the topology.

Discrete Gauss-Bonnet Theorem

Theorem For an oriented discrete triangulated surface M,
\n
$$
\sum_{J_i} k(v_i) = 2\pi \chi(M)
$$
\nwhere {v_i} is the collection of vertices, $k(\vec{v}_i)$ is the discrete
\nGaussian curvature defined as: $k(v_i) = 2\pi - \sum_{j,k} \theta_i^{jk}$ $v_i d \ge M$
\nand $\chi(M) = |V| + |V| - |E|$
\n $\lim_{t \to 0} \frac{1}{k} e^{j\pi i} e^{j\pi i} e^{j\pi i}$

