Lecture 1:

Image transformation Image transformation = $(0 : \mathcal{I} \rightarrow \mathcal{I}$ (transform one image to another) .et τ = Collection of images of size N and range of intensity [0, M]. $\{f \in \mathsf{M}_{\mathsf{N}\times\mathsf{N}}\left(\mathbb{R}\right) \; : \; \mathsf{0} \leqslant \mathsf{f}(\mathsf{C},\mathsf{J}) \leqslant \mathsf{M} \; \mathsf{C} \; \mathsf{C} \leqslant \mathsf{C} \mathsf{C}, \mathsf{J} \leqslant \mathsf{N} \}$ (for simplicity, assume f is a square image; can be general NixM2 image) ① Find ^a suitable transformation Tt Imaging problems / $g \colon= \top (\{ \})$ becomes good! $\sqrt{2}$ noisy image ^② Given ^a noisy ^I distorted image ^g ind transformation T, find origina clean image f . $9 = T(f) + n$ n know T known form "unknown (Inverse problem)

Definition: (Linear image transformation)

\n
$$
\begin{aligned}\n& \mathcal{O}: \mathbf{1} \rightarrow \mathbf{1} \text{ is linear } \langle \pm \rangle \quad \mathcal{O}(\alpha f + g) = a \mathcal{O}(f) + \mathcal{O}(g) \quad \text{for} \quad \forall f, g \in \mathbf{1} \text{ is linear} \\
\text{Take } f \in \mathbf{1} \text{ . Let} \\
& \mathbf{1}_{\alpha k} \in \{ \mathbf{1}_{\alpha} \text{ . } \mathbf{1}_{\alpha k} \text{ and } \mathbf{1}_{
$$

Definition: (Shift-invariant)

 $l \rightarrow \mathbb{R}$ invariant $\iff \mathcal{A}(x, \alpha, y, \beta) = \mathcal{A}(x - x, \beta - y)$ for $\forall 1 \leq x, y, \alpha, \beta \leq N$

Definition: (Convolution) Let $f, g \in \mathcal{I}$ $Theorem: PSF is shift-invariant \Rightarrow the operator O is a$ </u> Proof: Let $g := \mathcal{Q}(\xi)$. $g(\lambda, \beta) = \sum_{x=1}^{\infty} \sum_{y=1}^{x} f(x, y) \underbrace{h(x, \lambda, y, \beta)}$ Remark: onvolution of 1 and $g \Leftrightarrow f * g(x, \beta) =$ $\sum_{y=1}$ fix, y) g (d. ^x , p - y) (Assume f and g are periodically extended: $\left\{\right.$ $f_{\left(\right.}{\left.\left.\right.}\right.}$ $f_{\left(\right.}{\left.\right.}\right.})$, y+j N) = d (x ,y) $g(x+in, y+jN) = g(x,y)$ $\forall i,j \in \mathbb{Z}$ convolution with the input image . 5 - x , (3–7) $=$ $\pm *$ f ω $\int xR = h*f$ (exercise) . Convolution is important for understanding image blur

Definition: (Separable) Theorem: Suppose PSF is separable . Then : Separable \Leftrightarrow \uparrow $f(x, d, y, \beta) = f_{\text{lc}}(x, d) f_{\text{lv}}(y, \beta)$ for \forall $1 \leq x, y, d, \beta \leq N$ The operator. ^① consists of two matrix multiplication .

Proof:
\n
$$
\frac{\text{Proof:}}{\text{Recall: N}} = \sum_{x=1}^{N} \sum_{y=1}^{N} f(x,y) \cdot h(x, d, y, \beta)
$$
\n
$$
= \sum_{x=1}^{N} \sum_{y=1}^{N} f(x,y) \cdot h(x, d, y, \beta)
$$
\n
$$
= \sum_{x=1}^{N} \sum_{y=1}^{N} f(x,y) \cdot h(x, d, y, \beta)
$$
\n
$$
= \sum_{x=1}^{N} \sum_{y=1}^{N} f(x, d) \cdot \sum_{y=1}^{N} f(x, y) \cdot h(y, \beta)
$$
\n
$$
= \sum_{x=1}^{N} \sum_{y=1}^{N} f(x, d) \cdot \sum_{y=1}^{N} f(x, y) \cdot h(y, \beta)
$$
\n
$$
= \sum_{x=1}^{N} \sum_{y=1}^{N} f(x, d) \cdot \sum_{y=1}^{N} f(x, d, y, \beta)
$$