MMAT5390 Mathematical Image Processing **Midterm Examination**

You have to answer all five questions. The total score is 100. Please show your steps unless otherwise stated.

1. (20pts) Determine if the following PSFs of linear transformations on $N \times N$ square images are separable and/or shift-invariant (with h_s being N-periodic in both arguments) by observing their corresponding transformation matrices. Please justify your answers with detailed explanations.

$$
(a) H = \begin{pmatrix}\n2 & 3 & 1 & 6 & 9 & 3 & 4 & 6 & 2 \\
1 & 2 & 3 & 3 & 6 & 9 & 2 & 4 & 6 \\
3 & 1 & 2 & 9 & 3 & 6 & 6 & 2 & 4 \\
2 & 4 & 6 & 2 & 2 & 3 & 1 & 6 & 9 & 3 \\
6 & 2 & 4 & 3 & 1 & 2 & 9 & 3 & 6 \\
6 & 9 & 3 & 4 & 6 & 2 & 2 & 3 & 1 \\
3 & 6 & 9 & 2 & 4 & 6 & 1 & 2 & 3 \\
2 & 9 & 3 & 6 & 6 & 2 & 4 & 3 & 1 & 2\n\end{pmatrix},
$$
\n
$$
(b) H = \begin{pmatrix}\ne^{-1} & e^{-2} & e^{-3} & 0 & 0 & 0 & e^{-2} & e^{-3} & e^{-4} \\
e^{-4} & e^{-5} & e^{-6} & 0 & 0 & 0 & e^{-5} & e^{-6} & e^{-7} \\
e^{-7} & e^{-8} & e^{-9} & 0 & 0 & 0 & e^{-8} & e^{-9} & e^{-10} \\
e^{-8} & e^{-9} & e^{-10} & e^{-7} & e^{-8} & e^{-9} & 0 & 0 & 0 \\
e^{-8} & e^{-9} & e^{-10} & e^{-7} & e^{-8} & e^{-9} & 0 & 0 & 0 \\
0 & 0 & 0 & e^{-5} & e^{-5} & e^{-7} & e^{-4} & e^{-5} & e^{-6} \\
0 & 0 & 0 & 0 & e^{-5} & e^{-7} & e^{-4} & e^{-5} & e^{-6} \\
0 & 0 & 0 & \sqrt{3} & \sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt{3} & \sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt{3} & \sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt{3} & \sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt{3} & \sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt{10} & 0 & \sqrt{6} & 0 & 3 \\
0 & \sqrt{6} & 2 & 0 & 0 & 0 & 0 & 3 & \sqrt{6} \\
0 & 0 & 0 & \sqrt{15} & \sqrt{10} & 0 & 0 &
$$

PLEASE TURN TO THE NEXT PAGE

2. (20pts) Consider a 4×4 image of the following form:

$$
I = \begin{pmatrix} a & a & b & b \\ c & c & d & d \\ e & e & f & f \\ g & g & h & h \end{pmatrix}
$$

where a, b, c, d, e, f, q, h are given by your birthday. For example, if your birthday is 13 October, 1990, then $abcdefgh = 19901013$. If your birthday is 2 March, 1991, then $abcdefgh = 19910302$.

- (a) When is your birthday? (Hope you don't mind, I may buy you a birthday cake if possible)
- (b) Find the Walsh transform matrix W for a 4×4 image, i.e. the matrix such that the Walsh transform of f is $W f W^T$. Please show all your steps.
- (c) Verify that W is orthogonal.
- (d) Compute the Walsh transform of I.
- 3. (20pts) This question is about singular value decomposition.
	- (a) Consider

$$
A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}.
$$

- i. Compute $A^T A$. Find the eigenvalues of $A^T A$. Please show all your steps.
- ii. Compute the singular value decomposition of A. Please show all your steps.
- iii. Write A as a linear combination of eigen-images.
- iv. Find an image \tilde{A} with rank 2 such that $||\tilde{A} A||_F$ is equal to 2 $(|| \cdot ||_F$ is the Frobenius norm). Please explain your answer with details.
- (b) (A bit challenging) Consider a $N \times N$ image, where $N > 100000$. Suppose the

singular value decomposition of I is given by $I = V$ $\sqrt{ }$ \vert σ_1 σ_2 . . . σ_N \setminus V^T . It

is known that V is given by:

$$
V = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & 0 & \cdots & 0 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & 0 & \cdots & 0 \\ \frac{1}{\sqrt{3}} & 0 & 0 & \cdots & 0 \\ 0 & 0 & a_{1,1} & \cdots & a_{1,N-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_{N-3,1} & \cdots & a_{N-3,N-2} \end{pmatrix}
$$

Now, suppose the image I is corrupted by noise $n \in M_{N \times N}(\mathbb{R})$ at the upper left corner. In other words, the noisy image is given by $\tilde{I} = I + n$, where n is given by:

PLEASE TURN TO THE NEXT PAGE

$$
n = \begin{pmatrix} \epsilon_1 & \epsilon_2 & \epsilon_3 & 0 & \cdots & 0 \\ \epsilon_2 & \epsilon_1 & \epsilon_3 & 0 & \cdots & 0 \\ \epsilon_3 & \epsilon_3 & \epsilon_3 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}
$$

Provide that $\epsilon_3 = \frac{\epsilon_1 + \epsilon_2}{2}$ $\frac{+\epsilon_2}{2}$.

Compute the singular value decomposition of \tilde{I} in terms of $V, \epsilon_1, \epsilon_2, \epsilon_3$ and σ_i 's. Please explain your answer with details.

4. (20pts) Let $g = (g(k, l))_{0 \le k, l \le N-1}$ be an $N \times N$ image, and denote its reflection about $\left(\frac{-1}{2},\frac{-1}{2}\right)$ $\left(\frac{2}{2}\right)$ by $\tilde{g} = (\tilde{g}(k, l))_{-N \leq k \leq -1, -N \leq l \leq -1}$. That is,

$$
\tilde{g}(k, l) = g(-1 - k, -1 - l)
$$
 for $-N \le k \le -1$ and $-N \le l \le -1$.

Prove that the discrete Fourier transform (DFT) of \tilde{q} is given by:

$$
DFT(\tilde{g})(m,n) = e^{2\pi j \frac{m+n}{N}} \hat{g}(-m,-n),
$$

where \hat{g} is the DFT of g. Please show all your steps.

- 5. (20pts) Consider a $N \times N$ image $I = (I(k, l))_{0 \leq k, l \leq N-1}$. Let $\hat{I} = (\hat{I}(m, n))_{0 \leq m, n \leq N-1}$ be the discrete Fourier transform of I. Assume that N is even and $N > 10000$.
	- (a) Explain why the middle region of \hat{I} can be regarded as the high-frequency region and the four corners can be regarded as the low frequency region. Please explain in full details to demonstrate your understanding of the concept.
	- (b) (**Challenging**) Let A and B be $N \times N$ matrices defined as follows:

$$
A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ & & & 1 & 1 & 1 \\ & & & & 1 & 1 \\ & & & & 1 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ & & & & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}
$$

where D is a $(N-6) \times (N-6)$ real matrix and E is a $(N-6) \times (N-6)$ zero matrix. Note that entries of A and B without indicated values are assumed to be zero. Let $H = \frac{1}{3^{N-7}} A^{N-6} + B$. Consider $\tilde{I}(m, n) = H(m, n)\hat{I}(m, n)$ for $0 \leq m, n \leq N-1$. Prove that \tilde{I} represents a low-pass filtering if $D = V J V^{-1}$, where V is an invertible $(N-6) \times (N-6)$ real matrix and \tilde{J} is given by

$$
J = \begin{pmatrix} 0 & a_1 & & & \\ & 0 & a_2 & & \\ & & \ddots & \ddots & \\ & & & \ddots & a_{N-7} \\ & & & & 0 \end{pmatrix}
$$

Here, $a_1, ..., a_{N-7}$ are non-zero real numbers.

END OF PAPER