
MATH3360: Mathematical Imaging

Assignment 1 Solutions

1. (a) Note that H is a 4× 4 matrix; hence it represents a linear transfor-
mation on 2× 2 images.

H is not block-circulant. For example, consider the y = 1, β = 1-

submatrix of H, i.e.

(
2 0
4 2

)
. This is not a circulant matrix, as the

shift-operator T maps

(
2
4

)
to

(
0
2

)
instead of

(
4
2

)
. Hence h is not

shift-invariant with hs being 2-periodic in both arguments.
(However, H is block-Toeplitz and thus h is shift-invariant.)

H is not a Kronecker product of two 2 × 2 matrices. For example,
consider the y = 1, β = 1- and y = 2, β = 1-submatrices of H, i.e.(

2 0
4 2

)
and

(
2 2
0 4

)
. Neither is a scalar multiple of the other. Hence

h is not separable.

(b) Note that H is a 9× 9 matrix; hence it represents a linear transfor-
mation on 3× 3 images.

H is block-circulant. The y = 1, β = 1-, the y = 2, β = 2- and the y =

3, β = 3-submatrices of H are all

 9 9 18
18 9 9
9 18 9

, which is circulant;

the y = 2, β = 1-, the y = 3, β = 2- and the y = 1, β = 3-submatrices

of H are all

 9 9 18
18 9 9
9 18 9

, which is circulant; the y = 3, β = 1-,

the y = 1, β = 2- and the y = 2, β = 3-submatrices of H are all18 18 36
36 18 18
18 36 18

, which is also circulant. Hence h is shift-invariant

with hs being 3-periodic in both arguments.

H is the Kronecker product of two 3× 3 matrices; explicitly,

H =

3 3 6
6 3 3
3 6 3

⊗
3 3 6

6 3 3
3 6 3

 =
[
circ

(
(3, 3, 6)T

)]T⊗[circ
(
(3, 3, 6)T

)]T
.

Hence h is separable.

(c) Let s = α− x, t = β − y. Then, H(x, α, y, β) = st+ s2. Hence, H is
shift-invariant.
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SupposeH is separable. Then, there exists hc, hr such thatH(x, α, y, β) =
hc(x, α)hr(y, β). We can then deduce the following results:
H(1, 2, 2, 3) = hc(1.2)hr(2, 3) = 2 andH(1, 2, 2, 4) = hc(1, 2)hr(2, 3) =
3
=⇒ hr(2, 3)/hr(2, 4) = 2/3.
But, H(3, 2, 2, 3) = hc(1, 2)hr(2, 3) = 0 andH(3, 2, 2, 4) = hc(1, 2)hr(2, 4) =
−1
=⇒ hr(2, 3)/hr(2, 4) = 0 6= 2/3.
Hence, H is not separable.

(d) Since H(x, α, y, β) = αβe(x−y)(x
2+xy+y2) = αβex

3−y3 = αex
3

βe−y
3

,
H is separable.
Note that H(1, 2, 1, 1) = 2, but H(2, 3, 1, 1) = 3e7 6= 2. Hence, H is
not shift-invariant.

2. Let f, g ∈Mm×n(R), and assume that they are periodically extended.

Let α ∈ N ∩ [1,m] and β ∈ N ∩ [1, n]. By definition,

f ∗ g(α, β) =

m∑
x=1

n∑
y=1

f(x, y)g(α− x, β − y)

=

α−1∑
i=α−m

β−1∑
j=β−n

f(α− i, β − j)g(i, j) (letting i = α− x, j = β − y)

=

0∑
i=α−m

0∑
j=β−n

f(α− i, β − j)g(i, j) +

0∑
i=α−m

β−1∑
j=1

f(α− i, β − j)g(i, j)

+

α−1∑
i=1

0∑
j=β−n

f(α− i, β − j)g(i, j) +

α−1∑
i=1

β−1∑
j=1

f(α− i, β − j)g(i, j)

=

m∑
i=α

n∑
j=β

f(α− i, β − j)g(i, j) +

m∑
i=α

β−1∑
j=1

f(α− i, β − j)g(i, j)

+

α−1∑
i=1

n∑
j=β

f(α− i, β − j)g(i, j) +

α−1∑
i=1

β−1∑
j=1

f(α− i, β − j)g(i, j) (by periodicity)

=

m∑
i=1

n∑
j=1

g(i, j)f(α− i, β − j)

= g ∗ f(α, β);

hence f ∗ g = g ∗ f .

3. Let h be the shift-invariant PSF of a linear image transformation on
Mn×n(R) in the sense that h(x, α, y, β) = hs(α − x, β − y). Let H be
the corresponding transformation matrix.
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Fix y and β. Then for any α, x and a ∈ N satisfying a ≤ n−max{α, x},

h (x+ an, α+ an, y, β) = hs (α+ an− x− an, β − y)

= hs(α− x, β − y)

= h(x, α, y, β)

On the other hand, fix x and α. Then for any β, y and a ∈ N satisfying
a ≤ n−max{β, y},

h(α, x, β + an, y + an) = hs(α− x, β + an− y − an)

= hs(α− x, β − y)

= h(x, α, y, β)

Hence, we know H is block Toeplitz.
Reverse all the statements shown above, we know h is shift-invariant if H
is block Toeplitz.

4. Let h be the separable PSF of a linear image transformation, with h(x, α, y, β) =
hc(x, α)hr(y, β). Let H be the corresponding transformation matrix.

Then the y = k, β = l-submatrix of H (denoted by H̃kl) is given by x→

α ↓
(
y = k
β = l

)  = [H (α+ (l − 1)n, x+ (k − 1)n)]1≤x≤n
1≤α≤n

= [h(x, α, k, l)]1≤x≤n
1≤α≤n

= [hc(x, α)hr(k, l)]1≤x≤n
1≤α≤n

= hr(k, l)[hc(x, α)]1≤x≤n
1≤α≤n

= hr(k, l)h
T
c .
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Recall that

H =



 x→

α ↓
(
y = 1
β = 1

)   x→

α ↓
(
y = 2
β = 1

)  · · ·

 x→

α ↓
(
y = n
β = 1

)  x→

α ↓
(
y = 1
β = 2

)   x→

α ↓
(
y = 2
β = 2

)  · · ·

 x→

α ↓
(
y = n
β = 2

) 
...

...
. . .

... x→

α ↓
(

y = 1
β = n

)   x→

α ↓
(

y = 2
β = n

)  · · ·

 x→

α ↓
(
y = n
β = n

) 



=


H̃11 H̃21 · · · H̃n1

H̃12 H̃22 · · · H̃n2

...
...

. . .
...

H̃1n H̃2n · · · H̃nn

 =


hr(1, 1)hTc hr(2, 1)hTc · · · hr(n, 1)hTc
hr(1, 2)hTc hr(2, 2)hTc · · · hr(n, 2)hTc

...
...

. . .
...

hr(1, n)hTc hr(2, n)hTc · · · hr(n, n)hTc



=


hTr (1, 1)hTc hTr (1, 2)hTc · · · hTr (1, n)hTc
hTr (2, 1)hTc hTr (2, 2)hTc · · · hTr (2, n)hTc

...
...

. . .
...

hTr (n, 1)hTc hTr (n, 2)hTc · · · hTr (n, n)hTc

 = hTr ⊗ hTc .

5. (a) We first compute the SVD decomposition of A. We start by finding
the eigenvalues and corresponding orthonormal eigenbasis of ATA.

ATA =

10 6 0
6 10 0
0 0 25


p(λ) = (det)(ATA− λI3) = −(λ− 4)(λ− 16)(λ− 25).
So, the eigenvalues of ATA are λ1 = 25, λ2 = 16, λ3 = 4.

The corresponding eigenvectors are v1 =

0
0
1

, v2 = 1√
2

1
1
0

, and

v3 = 1√
2

 1
−1
0

.

Then we compute the matrix U . u1 = 1
σ1
Av1 =

0
0
1

, u2 = 1
σ2
Av2 =

1√
2

1
1
0

, and u3 = 1
σ3
Av3 = 1√

2

 1
−1
0


So, A = UΣV T =

0 1√
2

1√
2

0 1√
2

−1√
2

1 0 0

 5 0 0
0 4 0
0 0 2

  0 0 1
1√
2

1√
2

0
1√
2

−1√
2

0
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We can then write A as A = 5u1v
T
1 +4u2v

T
2 +2u3v

T
3 = 5

0 0 0
0 0 0
0 0 1

+

2

1 1 0
1 1 0
0 0 0

+

 1 −1 0
−1 1 0
0 0 0


(b) By the formula for error of rank-k approximation of SVD, the rank-2

approximation of A has error σ3 = 2 in Frobenius norm. So, we can
simply take

Ã = 5u1v
T
1 + 4u2v

T
2 = 5

0 0 0
0 0 0
0 0 1

+ 2

1 1 0
1 1 0
0 0 0


6. Coding Assignment:

Q1:

1 ijv(ind, :) = [(beta−1)*w+alpha, (y−1)*w+x, kernel(i+2, ...
j+2)];

Q2:

1 hr 1 = eye(H);
2 hr 2 = circshift(hr 1, [1 0]);
3 hr 3 = circshift(hr 1, [−1 0]);
4 hr = (hr 1*2 + hr 2 + hr 3) / 4;

Q3:

1 img = img + S(i, i) * U(:, i) * V(:, i)';

Q4:

1 if t ≥ n/(2ˆp) && t < (n+0.5)/(2ˆp)
2 H(i, j) = sqrt(2)ˆp;
3 elseif t ≥ (n+0.5)/(2ˆp) && t < (n+1)/(2ˆp)
4 H(i, j) = −sqrt(2)ˆp;

1 img = img + G(i, j) * Ht(:, i) * H(j, :);
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