
Chapter 11: Inner Product

11.1 Basic Properties of Dot Product

Definition 11.1.1: For α, β ∈ Rm, we define

⟨α, β⟩ =
m∑
i=1

[α]i[β]i = [α]1[β]1 + · · ·+ [α]m[β]m.

It is called an inner product (dot product) of Rm and Rm is called an inner product space. If we regard

α, β as m× 1 matrix, then

⟨α, β⟩ = αtβ.

Example 11.1.1: 〈(
1

2

)
,

(
3

4

)〉
= 1× 3 + 2× 4 = 11,

〈 1

2

3

 ,

 4

5

6

〉 = 1× 4 + 2× 5 + 3× 6 = 32.

Proposition 11.1.2: For any α, β, γ ∈ Rm, a ∈ R, we have

(1) ⟨α, β⟩ = ⟨β, α⟩. Symmetric

(2) ⟨aα+ β, γ⟩ = a ⟨α, γ⟩+ ⟨β, γ⟩. Bilinear

(3) ⟨α, α⟩ ≥ 0. Moreover, ⟨α, α⟩ = 0 if and only if α = 0. Positive Definite

Proof: (1) and (2) are properties of matrix algebra.

(3). Let α = (x1, . . . , xm)t. Then ⟨α, α⟩ =
m∑
i=1

x2i ≥ 0. So ⟨α, α⟩ = 0 if and only if xi = 0 for all i if

and only if α = 0.

Remark 11.1.3: Dot product is a very special inner product. In general, an inner product is a function,

⟨·, ·⟩, of two vector-variables satisfying properties (1), (2) and (3) in Proposition 11.1.2. All results in the

following sections, you may see that they hold since the proof do not involve the actually formula of an

inner product.

Following is an example of inner product even though it may be out of syllabus.

Example 11.1.2: Consider the vector space C0[a, b] (or Pn(R)), the set of all continuous real-valued

functions. Let f, g ∈ C0[a, b]. Define

⟨f, g⟩ =
∫ b

a
f(t)g(t)dt.

It is easy to check that this function satisfies the properties listed in Proposition 11.1.2. �

Proposition 11.1.4: Let a, b ∈ R, α, β, γ ∈ Rm. Then

(a) ⟨0, α⟩ = ⟨α,0⟩ = 0.

(b) ⟨aα+ bβ, γ⟩ = a ⟨α, γ⟩+ b ⟨β, γ⟩.
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(c) ⟨γ, aα+ bβ⟩ = a ⟨γ, α⟩+ b ⟨γ, β⟩.

(d) If ⟨α, θ⟩ = 0 for all θ ∈ Rm, then α = 0.

(e) If ⟨α, θ⟩ = ⟨β, θ⟩ for all θ ∈ Rm, then α = β.

Proof:

(a) ⟨0, α⟩ = ⟨(−1)α + α, α⟩ = (−1) ⟨α, α⟩+⟨α, α⟩ = 0. The last part follows from

the symmetric property.

(b) Applying item (2) of Proposition 11.1.2 and (a), we have

⟨aα + bβ, γ⟩ = a ⟨α, γ⟩+ ⟨bβ, γ⟩ = a ⟨α, γ⟩+ ⟨bβ + 0, γ⟩
= a ⟨α, γ⟩+ b ⟨β, γ⟩+ ⟨0, γ⟩ = a ⟨α, γ⟩+ b ⟨β + 0, γ⟩ .

(c) Follows from the symmetric property.

(d) Under the assumption, we take θ = α. Then ⟨α, α⟩ = 0. By item (3) of

Proposition 11.1.2 we obtain α = 0.

(e) ⟨α, θ⟩ = ⟨β, θ⟩ implies ⟨α− β, θ⟩ = 0 for all θ. By (d) we have α − β = 0.

Hence α = β. �

Definition 11.1.5: The norm (or length) of α ∈ Rm is defined by ∥α∥ =
√
⟨α, α⟩. Since ⟨α, α⟩ ≥ 0,√

⟨α, α⟩ is meaningful.

Example 11.1.3: Let V = R3 with the dot product. Let

α =

 1

2

3

 and β =

 1

0

1

 .

Then

∥α∥ =
√

⟨α, α⟩ =
√

12 + 22 + 32 =
√
14.

∥β∥ =
√
⟨β, β⟩ =

√
12 + 02 + 12 =

√
2.

�

Proposition 11.1.6: Let a ∈ R and α ∈ Rm.

1. ∥aα∥ = |a|∥α∥.

2. Suppose α ̸= 0. Let a = 1
∥α∥ , then ∥aα∥ = 1.

Proof: Consider ∥aα∥2 = ⟨aα, aα⟩ = a2 ⟨α, α⟩ = a2∥α∥2. Since ∥α∥ ≥ 0, ∥aα∥ = |a|∥α∥.
Suppose α ̸= 0 and let a = 1

∥α∥ . Now ∥aα∥ =
∣∣∣ 1
∥α∥

∣∣∣ ∥α∥ = ∥α∥
∥α∥ = 1. �

Definition 11.1.7: A vector α ∈ Rm is said to be a unit vector if ∥α∥ = 1.

A non-zero vector α can be normalized to a unit vector 1
∥α∥α.
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Example 11.1.4: In Example 11.1.3, α and β can be normalized to

1

∥α∥
α =

1√
14

α =


1√
14
2√
14
3√
14

 ,

1

∥β∥
β =

1√
2
β =


1√
2

0
1√
2


respectively. �

11.2 Orthogonal Sets

In this section, V denotes a subspace of Rm with inner product.

Definition 11.2.1: Suppose α, β ∈ V . α and β are said to be orthogonal or perpendicular if ⟨α, β⟩ = 0.

In this case, it is denoted by α ⊥ β.

Example 11.2.1:

1. Let V = R3. Then  1

2

3

 ⊥

 −1

−1

1


as 〈 1

2

3

 ,

 −1

−1

1

〉 = 1× (−1) + 2× (−1) + 3× 1 = 0.

2. Let V = Rm, then ei ⊥ ej if i ̸= j.

�

Definition 11.2.2: A subset S = {α1, . . . , αk} of V is said to be orthogonal if

1. 0 /∈ S, i.e., αi ̸= 0 for i = 1, . . . , k.

2. αi ⊥ αj for i ̸= j, i.e., ⟨αi, αj⟩ = 0 for i ̸= j.

Example 11.2.2:

1. S =


 1

2

3

 ,

 −1

−1

1


 is orthogonal subset of R3.

2. S =


 1

1

1

 ,

 1

−1

0

 ,

 1

1

−2


 is orthogonal subset of R3. Check!

3. S = {e1, . . . , ek} in Rm with k ≤ m is orthogonal.

�
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Proposition 11.2.3: Let S = {α1, . . . , αk} be an orthogonal subset of V . Let

α = a1α1 + · · ·+ akαk,

β = b1α1 + · · ·+ bkαk,

for some ai, bi ∈ R, i = 1, . . . , k. Then

⟨α, β⟩ = a1b1∥α1∥2 + · · ·+ akbk∥αk∥2 =
k∑

i=1

aibi∥αi∥2. (11.1)

Proof: First for 1 ≤ i ≤ k,

⟨α, αi⟩ = ⟨a1α1 + · · ·+ akαk, αi⟩
= a1 ⟨α1, αi⟩+ · · ·+ ak ⟨αk, αi⟩
= ai ⟨αi, αi⟩ = ai∥αi∥2.

The last step follows from the fact that ⟨αj, αi⟩ = 0 for j ̸= i.

⟨α, β⟩ = ⟨α, b1α1 + · · ·+ bkαk⟩
= b1 ⟨α, α1⟩+ · · ·+ bk ⟨α, αk⟩
= a1b1∥α1∥2 + · · ·+ akbk∥αk∥2.

�

Theorem 11.2.4: Let S = {α1, . . . , αk} be an orthogonal subset of V . Then S is linearly independent.

Proof: Suppose we have the relation of linear dependence:

a1α1 + · · ·+ akαk = 0.

For each 1 ≤ i ≤ k,

⟨a1α1 + · · ·+ akαk, αi⟩ = ⟨0, αi⟩ = 0.

On the other hand, by (11.1) we have

⟨a1α1 + · · ·+ akαk, αi⟩ = ai × 1∥αi∥2 = ai∥αi∥2.

Since ∥αi∥ > 0, ai = 0.
Therefore, S is linearly independent. �

Theorem 11.2.5: Let S = {α1, . . . , αk} be an orthogonal subset of V . Suppose α ∈ ⟨S⟩. So

α = a1α1 + · · ·+ akαk,

for some ai ∈ R, i = 1, . . . , k. Then

ai =
⟨α, αi⟩
∥αi∥2

,

i.e.,

α =
⟨α, α1⟩
∥α1∥2

α1 + · · ·+ ⟨α, αk⟩
∥αk∥2

αk =
k∑

i=1

⟨α, αi⟩
∥αi∥2

αi.
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Proof: Suppose α = a1α1 + · · ·+ akαk. For each 1 ≤ i ≤ k, from (11.1) we have

⟨α, αi⟩ = ai∥αi∥2.

So

ai =
⟨α, αi⟩
∥αi∥2

.

�

Remark 11.2.6: The advantage of using the above method is that we do not need to solve linear

equations to find the linear combination.

In order to use the theorem, we need to ensure that α ∈ ⟨S⟩.

Example 11.2.3: Let S be the orthogonal subset in Example 11.2.2, item 2. Given

α =

 1

2

3

 ∈ ⟨S⟩ .

Write α as a linear combination of α1, α2, α3.

Answer:

a1 =
⟨α, α1⟩
∥α1∥2

=
6

3
= 2,

a2 =
⟨α, α2⟩
∥α2∥2

=
−1

2
= −1

2
,

a3 =
⟨α, α3⟩
∥α3∥2

=
−3

6
= −1

2
.

Hence

α = 2α1 −
1

2
α2 −

1

2
α3.

�

Definition 11.2.7: Let V be a subspace of Rm. A subset S of V is said to be an orthogonal basis for

V if S is a basis for V and is orthogonal.

If S is an orthogonal subset of V , then by Theorem 11.2.4, it is automatically linearly independent.

So in order to check if S is an orthogonal basis, we only need to check if ⟨S⟩ = V . So we have

Theorem 11.2.8: Let V be a subspace of Rm. Suppose S is an orthogonal subset of V . Then S is an

orthogonal basis if and only if ⟨S⟩ = V .

Corollary 11.2.9: Suppose S is an orthogonal subset of Rm. Then S is a basis for ⟨S⟩.

Corollary 11.2.10: Let V be a subspace of Rm. Suppose B = {α1, . . . , αn} is an orthogonal basis for

V . Then for any α ∈ V ,

α =
⟨α, α1⟩
∥α1∥2

α1 + · · ·+ ⟨α, αn⟩
∥αn∥2

αn.

Proof: Follows from Theorem 11.2.5. �
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Example 11.2.4:

1. S =


 1

1

1

 ,

 1

−1

0

 ,

 1

1

−2


 is orthogonal basis of R3, since dim(⟨S⟩) = 3 and ⟨S⟩ ⊆ R3.

2. S = {e1, . . . , em} in Rm is an orthogonal basis. It is called the standard basis for Rm. �

Definition 11.2.11: A subset S = {α1, . . . , αk} of Rm is said to be orthonormal if it is orthogonal and

every vector in S is a unit vector, i.e.,

⟨αi, αj⟩ =

 1 if i = j,

0 if i ̸= j.

Let V be a subspace of Rm. The subset B is said to be an orthonormal basis for V if it is orthonormal

and is a basis for V .

Since an orthonormal set S is orthogonal, the above theorems regarding orthogonal sets are also true

for orthonormal sets. In particular

Theorem 11.2.12: Let S = {α1, . . . , αk} be an orthonormal subsets of Rm and α ∈ ⟨S⟩. Then

α = ⟨α, α1⟩α1 + · · ·+ ⟨α, αk⟩αk.

If S = {α1, . . . , αk} is an orthogonal subset of Rm, then
{

1
∥α1∥α1, . . . ,

1
∥αk∥αk

}
is an orthonormal

subset. The process is called normalization.

Example 11.2.5:

1. S = {(1, 2)t, (−2, 1)t} is an orthogonal basis for R2. Normalizing it, we obtain an orthonormal basis.

B =

{(
1√
5
,
2√
5

)t

,

(
−2√
5
,
1√
5

)t
}
.

2. S = {(1, 1, 1)t, (1,−1, 0)t, (1, 1,−2)t} is an orthogonal basis for R3. Normalizing it, we obtain an

orthonormal basis

B =

{(
1√
3
,
1√
3
,
1√
3

)t

,

(
1√
2
,
−1√
2
, 0

)t

,

(
1√
6
,
1√
6
,
−2√
6

)t
}
.

�

11.3 Gram-Schmidt Orthogonalization Process

Let S = {α1, . . . , αk} be an orthogonal subset of Rm. Suppose β ∈ ⟨S⟩. From Theorem 11.2.5 we

have

β =
⟨β, α1⟩
∥α1∥2

α1 + · · ·+ ⟨β, αk⟩
∥αk∥2

αk.

But what if β is not in ⟨S⟩? Let us compare the difference. We have the following theorem.

Theorem 11.3.1: Let S = {α1, . . . , αk} be an orthogonal subset of Rm and let β ∈ Rm. Then

α = β − ⟨β, α1⟩
∥α1∥2

α1 − · · · − ⟨β, αk⟩
∥αk∥2

αk

is orthogonal to αi for i = 1, . . . , k.
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Proof: For each 1 ≤ i ≤ k,

⟨α, αi⟩ = ⟨β, αi⟩ −
⟨β, α1⟩
∥α1∥2

⟨α1, αi⟩ − · · · − ⟨β, αk⟩
∥αk∥2

⟨αk, αi⟩ .

Since ⟨αj, αi⟩ is 0 unless j = i, the above is

⟨β, αi⟩ −
⟨β, αi⟩
∥αi∥2

⟨αi, αi⟩ = ⟨β, αi⟩ − ⟨β, αi⟩ = 0.

Hence α ⊥ αi. �

Theorem 11.3.2: Let S = {β1, β2, . . . , βk} be a linearly independent subset of V . Let α1 = β1 and

αℓ = βℓ −
⟨βℓ, α1⟩
∥α1∥2

α1 − · · · − ⟨βℓ, αℓ−1⟩
∥αℓ−1∥2

αℓ−1, for 2 ≤ ℓ ≤ k.

Then T = {α1, . . . , αk} is an orthogonal set.

Also ⟨β1, . . . , βℓ⟩ = ⟨α1, . . . , αℓ⟩ for ℓ = 1, . . . , k. In particular ⟨S⟩ = ⟨T ⟩.
The process of obtaining T by the above procedure is called the Gram-Schmidt Orthogonalization Process.

Proof: Firstly, we have ⟨β1⟩ = ⟨α1⟩. We are going to add one vector at a time.

Suppose ⟨α1, . . . , αℓ−1⟩ = ⟨β1, . . . , βℓ−1⟩ and the set {α1, . . . , αℓ−1} is orthogonal.

Thus ⟨α1, . . . , αℓ⟩ = ⟨β1, . . . , βℓ−1, αℓ⟩ = ⟨β1, . . . , βℓ−1, βℓ⟩, by Lemma 7.3.4.

Finally by Theorem 11.3.1, αℓ is orthogonal to αi for i = 1, . . . , ℓ−1. Thus {α1, . . . , αℓ} is orthogonal.

We repeat the process by increasing ℓ till ℓ = k. �

Corollary 11.3.3: Suppose V is a subspace of Rm. There exists an orthogonal (orthonormal) basis for

V .

Proof: By Corollary 8.2.10, V has a basis S. Applying Gram-Schmidt orthogonalization process to S,

we obtain an orthogonal set B. By Theorem 11.3.2, V = ⟨S⟩ = ⟨B⟩. By Corollary 11.2.9, B is a basis

of V .

Normalizing B, we can obtain an orthonormal basis. �

Example 11.3.1: Let V = R4 with the standard inner product. Let

β1 =


1

0

1

0

 , β2 =


1

1

1

1

 , β3 =


0

1

2

1

 .

Then S = {β1, β2, β3} is linearly independent. Applying Gram-Schmidt Orthogonalization Process find

an orthonormal subset T such that ⟨S⟩ = ⟨T ⟩.

Answer: Take α1 = β1 =


1

0

1

0

.

Then

α2 = β2 −
⟨β2, α1⟩
∥α1∥2

α1 =


1

1

1

1

− 2

2


1

0

1

0

 =


0

1

0

1

 .

Prepared by Prof. W.C. Shiu MATH1030 Linear Algebra I-20/21-11-7



Also

α3 = β3 −
⟨β3, α1⟩
∥α1∥2

α1 −
⟨β3, α2⟩
∥α2∥2

α2 =


0

1

2

1

− 2

2


1

0

1

0

− 2

2


0

1

0

1

 =


−1

0

1

0

 .

{α1, α2, α3} is an orthogonal basis for ⟨{β1, β2, β3}⟩. To obtain an orthonormal

basis for ⟨{β1, β2, β3}⟩, we can normalized the vectors

ξ1 =
1

∥α1∥
α1 =

1√
2


1

0

1

0

 , ξ2 =
1

∥α2∥
α2 =

1√
2


0

1

0

1

 , ξ3 =
1

∥α3∥
α3 =

1√
2


−1

0

1

0

 .

So the required set is T = {ξ1, ξ2, ξ3}. �

Example 11.3.2: Let A =
[
1 1 1 1

]
be a 1× 4 matrix. Let V = N (A). Find an orthonormal basis

for V .

Answer: We can obtain that

S =
{
β1 = (−1, 1, 0, 0)t, β2 = (−1, 0, 1, 0)t, β3 = (−1, 0, 0, 1)t

}
is a basis of N (A).

We apply Gram-Schmidt Orthogonalization Process to the set.

α1 = β1 = (−1, 1, 0, 0)t;

α2 = β2 −
⟨β2, α1⟩
∥α1∥2

α1 = (−1, 0, 1, 0)t − 1

2
(−1, 1, 0, 0)t = (−1/2,−1/2, 1, 0)t;

α3 = β3 −
⟨β3, α1⟩
∥α1∥2

α1 −
⟨β3, α2⟩
∥α2∥2

α2 = (−1, 0, 0, 1)t − 1

2
(−1, 1, 0, 0)t − 1

3
(−1/2,−1/2, 1, 0)t

= (−1/3,−1/3,−1/3, 1)t.

So

{(−1, 1, 0, 0)t, (−1/2,−1/2, 1, 0)t, (−1/3,−1/3,−1/3, 1)t}

is an orthogonal basis. Normalizing it, we can obtain an orthonormal basis{
ξ1 =

1√
2
(−1, 1, 0, 0)t, ξ2 =

1√
6
(−1,−1, 2, 0)t, ξ3 =

1√
12

(−1,−1,−1, 3)t
}
.

The above process will be easier if we start with another basis:

S = {β1 = (1,−1, 0, 0)t, β2 = (0, 0, 1,−1)t, β3 = (0, 1,−1, 0)t.}
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Now the first two vectors are orthogonal. Apply Gram-Schmidt Orthogonalization

Process to it:

α1 = β1 = (1,−1, 0, 0)t;

α2 = β2 −
⟨β2, α1⟩
∥α1∥2

α1 = β2 − 0α1 = β2 = (0, 0, 1,−1)t;

α3 = β3 −
⟨β3, α1⟩
∥α1∥2

α1 −
⟨β3, α2⟩
∥α2∥2

α2 = (1/2, 1/2,−1/2,−1/2)t.

So

{(1,−1, 0, 0)t, (0, 0, 1,−1)t, (1/2, 1/2,−1/2,−1/2)t.}

is an orthogonal basis for V . Normalizing it, we obtain an orthonormal basis{
1√
2
(1,−1, 0, 0)t,

1√
2
(0, 0, 1,−1)t, (1/2, 1/2,−1/2,−1/2)t

}
.

�

11.4 Some Useful Inequalities (Optional)

Theorem 11.4.1 (Cauchy-Schwarz’s inequality): Let V be an inner product space. Then for α, β ∈ V ,

|⟨α, β⟩| ≤ ∥α∥∥β∥.

Proof: If α = 0, then ⟨α, β⟩ = 0 and thus the inequality holds. If α ̸= 0, then

∥α∥ ̸= 0.

From

0 ≤
∥∥∥∥⟨α, β⟩∥α∥2

α− β

∥∥∥∥2 = ∥β∥2 − |⟨α, β⟩|2

∥α∥2
,

we get |⟨α, β⟩|2 ≤ ∥α∥2∥β∥2. That is, |⟨α, β⟩| ≤ ∥α∥∥β∥. �

Remark 11.4.2: The equality holds if and only if β is a multiple of α or α = 0.

For, in the proof of Theorem 11.4.1, we see that the equality holds only if α = 0 or ⟨α,β⟩
∥α∥2 α− β = 0.

Conversely, if α = 0 or β = cα for some scalar c, then the equality holds.

Theorem 11.4.3 (Triangle inequality): Let V be an inner product space. Then for α, β ∈ V , ∥α+β∥ ≤
∥α∥+ ∥β∥. The equality holds if and only if α = 0 or β = cα for some non-negative real number c.

Proof: Consider

∥α + β∥2 = ⟨α + β, α + β⟩ = ∥α∥2 + 2⟨α, β⟩+ ∥β∥2 ≤ ∥α∥2 + 2|⟨α, β⟩|+ ∥β∥2

≤ ∥α∥2 + 2∥α∥∥β∥+ ∥β∥2 = (∥α∥+ ∥β∥)2.

Hence ∥α + β∥ ≤ ∥α∥+ ∥β∥.
Note that the equality holds if and only if ⟨α, β⟩ = |⟨α, β⟩| = ∥α∥∥β∥. By

Remark 11.4.2, |⟨α, β⟩| = ∥α∥∥β∥ if and only if α = 0 or β = cα for some score c.
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If β = cα, then ⟨α, β⟩ = ⟨α, cα⟩ = c∥α∥2. However, ⟨α, β⟩ = |⟨α, β⟩| if and only
if ⟨α, β⟩ ≥ 0. Hence the equality holds if and only if α = 0 or β = cα for some
c ≥ 0. �

Definition 11.4.4: Let S = {ξ1, ξ2, . . . , ξm} be an orthonormal set in an inner product space V and let

α ∈ V . The scalars ai = ⟨ξi, α⟩, 1 ≤ i ≤ m, are called the Fourier coefficients of α with respect to S.

Theorem 11.4.5: Let V be an inner product space. Suppose {ξ1, . . . , ξk} is an orthonormal set in V .

For α ∈ V , we have min
xi∈R
1≤i≤k

∥∥∥∥α−
k∑

i=1
xiξi

∥∥∥∥ =

∥∥∥∥α−
k∑

i=1
aiξi

∥∥∥∥, where ai = ⟨ξi, α⟩ are the Fourier coefficients

of α.

Moreover,

∥∥∥∥α−
k∑

i=1
xiξi

∥∥∥∥ =

∥∥∥∥α−
k∑

i=1
aiξi

∥∥∥∥ if and only if xi = ai for all i. Also
k∑

i=1
|ai|2 ≤ ∥α∥2 and〈

ξj , α−
k∑

i=1
aiξi

〉
= 0, ∀j = 1, . . . , k. Hence, we see that α −

k∑
i=1

aiξi is orthogonal to each vector in

⟨ξ1, . . . , ξk⟩.

Proof: Consider∥∥∥∥∥α−
k∑

i=1

xiξi

∥∥∥∥∥
2

=

〈
α−

k∑
i=1

xiξi, α−
k∑

i=1

xiξi

〉
= ⟨α, α⟩ −

k∑
i=1

xiai −
k∑

i=1

xiai +

k∑
i=1

xixi

= ∥α∥2 +
k∑

i=1

(ai − xi)(ai − xi)−
k∑

i=1

|ai|2 = ∥α∥2 +
k∑

i=1

|ai − xi|2 −
k∑

i=1

|ai|2.

Thus

∥∥∥∥α−
k∑

i=1
xiξi

∥∥∥∥2 ≥ ∥α∥2 −
k∑

i=1
|ai|2 =

∥∥∥∥α−
k∑

i=1
aiξi

∥∥∥∥2.
The equality holds if and only if

k∑
i=1

|ai − xi|2 = 0. This is equivalent to xi =

ai ∀i = 1, . . . , k. That is, the minimum of

∥∥∥∥α−
k∑

i=1
xiξi

∥∥∥∥ is attained when xi =

ai ∀i = 1, . . . , k.

Since ∥α||2 −
k∑

i=1
|ai|2 =

∥∥∥∥α−
k∑

i=1
aiξi

∥∥∥∥2 ≥ 0, we have
k∑

i=1
|ai|2 ≤ ∥α∥2.

From Theorem 11.3.1 we have

〈
ξj, α−

k∑
i=1

aiξi

〉
= 0 for all j. �

11.5 Least Squares Problem (Optional)

Let V be an inner product space with W as its finite dimensional subspace. Given α ∈ V \W . We

want to find β ∈ W such that ∥α − β∥ = min
ξ∈W

∥α − ξ∥. One way of doing this is to find an orthonormal

basis of W and proceed as above.

An alternative method is to pick any basis, say A = {η1, . . . , ηk}, of W . Suppose β =
k∑

j=1
xjηj ∈ W

is the required vector, its existence is asserted in Theorem 11.4.5 yet to be determined.

By Theorem 11.4.5, we have ⟨ηi, α − β⟩ = 0 ∀i = 1, . . . , k. So

〈
ηi, α−

k∑
j=1

xjηj

〉
= 0 and then
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⟨ηi, α⟩ =
k∑

j=1
⟨ηi, ηj⟩xj . This system has the matrix form Gx = N , where x =

[
x1 · · · xk

]t
, N =[

⟨η1, α⟩ · · · ⟨ηk, α⟩
]t

and G = (⟨ηi, ηj⟩).
The matrix G is called the Gram matrix of A . It is known that G is invertible if A is linearly

independent.

Now, we have a unique solution β. Such vector β is called the best approximation to α in the least

squares sense.

Example 11.5.1: Let W = {(x, y, z, w) ∈ R4 | x− y − z +w = 0} be a subspace of R4 under the usual

inner product (i.e., the dot product). Find a vector β ∈ W that is closest to α = (−2, 1, 2, 1)t.

Solution: Clearly {η1 = (1, 1, 0, 0)t, η2 = (1, 0, 1, 0)t, η3 = (−1, 0, 0, 1)t} is a basis

of W .

Then G =
(
⟨ηi, ηj⟩

)
=

 2 1 −1

1 2 −1

−1 −1 2

 and N =

 −1

0

3

. Solve the equa-

tion Gx = N we get x =

 x1
x2
x3

 =

 0

1

2

. Thus, the required vector is

0η1 + 1η2 + 2η3 = (−1, 0, 1, 2)t. �

Given A ∈ Mm,k and B ∈ Mm,1. We want to find a matrixX0 ∈ Mk,1 such that ∥AX0−B∥ is minimum

among all k × 1 matrices X. Let W = C(A) be the column space of A, i.e., W = {AX | X ∈ Rk}. By

Theorem 11.4.5, we know that there is an X0 such that AX0−B is orthogonal to each vector in W . Thus

using the dot product as our inner product, we must have

(AX)t(AX0 −B) = 0 for all X ∈ Rk.

That is, XtAt(AX0 − B) = 0 for all X. This could happen only if At(AX0 − B) = 0 (by item (d) of

Proposition 11.1.4). That means X0 is a solution of the so-called normal equation

AtAX = AtB.

Moreover, it is known that if rank(A) = k, then AtA is non-singular. So the normal equation has unique

solution in X0 = (AtA)−1(AtB).

Following example is a well-known problem in statistics called regression.

Example 11.5.2: We would like to find a polynomial of degree n such that it fits given m points

(x1, y1), . . . , (xm, ym) in the plane in the least squares sense, in general, m > n+ 1. We put y =
n∑

j=0
cjx

j ,

where cj ’s are to be determined such that
m∑
i=1

(ŷi − yi)
2 is the least. Put ŷi =

n∑
j=0

cjx
j
i , i = 1, . . . ,m. Then

we have to solve the system 
1 x1 x21 · · · xn1
1 x2 x22 · · · xn2
...

...
...

...
...

1 xm x2m · · · xnm



c0

c1
...

cn

 =


ŷ1

ŷ2
...

ŷm


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in the least squares sense. Thus we need to find an X0 such that

∥AX0 −B∥ = min
X∈Rn+1

∥AX −B∥

with

A =


1 x1 x21 · · · xn1
1 x2 x22 · · · xn2
...

...
...

...
...

1 xm x2m · · · xnm

 , X =


c0

c1
...

cn

 and B =


y1

y2
...

ym

 .

When n = 1, the problem is called the linear regression problem. In this case

A =


1 x1

1 x2
...

...

1 xm

 , X =

[
c0

c1

]
and B =


y1

y2
...

ym

 .

Now W =
〈
(1, 1, . . . , 1)t, (x1, x2, . . . , xm)t

〉
. In practice as, x1, . . . , xm are not all equal, so dimW = 2.

Then

AtA =

 m
m∑
i=1

xi

m∑
i=1

xi
m∑
i=1

x2i

 =

 m mx̄

mx̄
m∑
i=1

x2i

 , AtB =


m∑
i=1

yi

m∑
i=1

xiyi

 =

 mȳ
m∑
i=1

xiyi

 ,

where x̄ = 1
m

m∑
i=1

xi and ȳ = 1
m

m∑
i=1

yi.

Then det(AtA) = m
m∑
i=1

x2i −m2x̄2 = m
m∑
i=1

(xi − x̄)2. Hence

X0 = (AtA)−1(AtB) =
1

m
m∑
i=1

(xi − x̄)2

mȳ
m∑
i=1

x2i −mx̄
m∑
i=1

xiyi

m
m∑
i=1

xiyi −m2x̄ȳ

 .

So

c1 =

m∑
i=1

xiyi −mx̄ȳ

m∑
i=1

(xi − x̄)2
=

m∑
i=1

(xi − x̄)(yi − ȳ)

m∑
i=1

(xi − x̄)2
and c0 =

ȳ
m∑
i=1

x2i − x̄
m∑
i=1

xiyi

m∑
i=1

(xi − x̄)2
.

�
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