
Chapter 3: Trees

3.1 General Properties of Trees

Definition 3.1.1: A tree is a connected graph without cycles. A forest (or an acyclic graph) is a graph

without cycles.

Definition 3.1.2: A vertex u of a graph is called a leaf or pendant if deg(u) = 1. A vertex that is not

a leaf is called a node.

Lemma 3.1.3: Let T be a tree with at least two vertices and let P = u0u1 · · ·uℓ be a longest path in T .

Then both u0 and uℓ are leaves.

Theorem 3.1.4: Every tree of order at least two contains at least two leaves.

Theorem 3.1.5: Suppose S = (d1, d2, . . . , dp) is a non-increasing sequence of positive integers. If

d1 + d2 + · · ·+ dp = 2(p− 1), then there exists a tree whose degree sequence is S.

Definition 3.1.6: Let G be a connected graph. If a tree T is a spanning subgraph of G, then T is called

a spanning tree of G.

Lemma 3.1.7: Any connected graph G contains a spanning tree.

Corollary 3.1.8: For any graph, there is a spanning subgraph which is a forest. Such a forest is called

a spanning forest.

Lemma 3.1.9: A graph G of order p with ω components has at least p− ω edges.

Corollary 3.1.10: Let G be a connected graph of order p. Then G contains at least p− 1 edges.

Lemma 3.1.11: Let P and Q be two distinct (u, v)-path. Then the closed walk PQ−1 contains a cycle.

Lemma 3.1.12: If W is a closed walk of odd length, then it contains an odd cycle (cycle with odd

order).

Theorem 3.1.13: If T is a simple graph on p vertices, then the following statements are equivalent:

(1) T is a tree.

(2) T has p− 1 edges and no cycles.

(3) T has p− 1 edges and is connected.

(4) T is connected and every edge is a bridge.

(5) There is exactly one path between every pair of distinct vertices in T .

(6) T has no cycles, but adding an edge to T between a pair of nonadjacent vertices creates exactly one

cycle.

Theorem 3.1.14: A graph G is bipartite if and only if G contains no odd cycles.

Corollary 3.1.15: A forest is a bipartite graph.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-3-1

Theorem 3.1.18: Let T be a tree and let ni be the number of vertices of degree i. Then the number of

leaves of a nontrivial tree is given by

n1 = 2 + n3 + 2n4 + 3n5 + · · · = 2 +

∞∑
i=3

(i− 2)ni.

3.3 Number of Spanning Trees

Definition 3.3.1: A (p, q)-graph G is called a labeled graph if there is a bijection f : V (G) → S, where

|S| = p. The set S is called a label set.

Definition 3.3.2: Let G be a graph.

1. Recall that a subtree T of G is called a spanning tree of G if V (T) = V (G).

2. Recall that a subforest F of G is called a spanning forest if for each component H of G, the subgraph

F ∩H is a spanning tree of H.

3. Suppose G is connected. For a fixed labeling of the vertices of G, the number of distinct spanning

trees in G is denoted by τ(G). Hence, τ(G− e) = 0 if e is a cut-edge.

Example 3.3.3: K3 has three difference spanning trees. They are

B C

A

B C

A

B C

A

Proposition 3.3.4: Let G be a graph.

1. If G is a tree, then τ(G) = 1.

2. If G1, . . . , Gω are the components of G, then the number of spanning forests of G is τ(G1) · · · τ(Gω).

Remark 3.3.5: By the proposition above, we assume that G is connected. If G′ is the graph obtained

from G by removing all loops from G, then τ(G′) = τ(G). Therefore, we always assume that G is loopless

when counting the number of spanning trees (or forests) of G.

Let G be a simple graph. A link e of G is said to be contracted if it is deleted and its ends are

identified. The resulting graph is denoted by G · e. The subgraph obtained from G · e by removing all

loops is denoted by G ∗ e. The underlying simple graph of G · e is called the simple contraction of G by e

and denoted by G/e. From the remark above, we have τ(G · e) = τ(G ∗ e).

G e. G e*

f

f

G

D

b

c

d

A=C

a
B

D

b

c

d

A=C

a
B

CD

e

BA
a

c

db

Figure 1: Before and after the contraction of e.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-3-2

It is easy to see that

p(G · e) = p(G)− 1;

q(G · e) = q(G)− 1;

ω(G · e) = ω(G).

Proposition 3.3.6: Suppose T is a tree. For any e ∈ E(T), the contracted graph T · e is still a tree.

Theorem 3.3.7: Let G be a graph and e ∈ E(G), where e is not a loop. Then τ(G) = τ(G ·e)+τ(G−e).

Example 3.3.8: To calculation τ(G), we often use the graph itself to represent the number of spanning

trees. Also, if a graph contains some loops, we may delete the loops from that graph before computing

the number of spanning trees (but we did not do this in the following example). In each step, we always

choose an edge e that is not a bridge.

τ(G) =

e

= e +
e

=

 +
e

 +

 e +
e


= 1 + 2


e

+

 e +


= 1 + 2

 +

+

 +

+K1

= 1 + 2(1 + 1) + (1 + 1) + 1 = 8.

To count the number of spanning trees in Kp is the same as computing the number of ways to connect

p labeled vertices by a tree. That is, the number of labeled trees of order p. A simple formula for τ(Kp)

was found by the English mathematician A. Cayley in 1889∗ when he wanted to count the number of

chemical molecules with formula CnH2n+2. He is the first person, in 1857, to use the term ‘tree’ in graph

theory. Afterwards, the German mathematician Ernst Paul Heinz Prüfer gave a simple proof on this

theorem in 1918†.

The idea of Prüfer is to construct a bijection between the set of labeled trees with p vertices and the set

of all sequences (called Prüfer code or Prüfer sequence) of the form (a1, . . . , ap−2), where ai ∈ {1, 2, . . . , p}.

Theorem 3.3.9 (Cayley): The complete graph Kp has pp−2 different spanning trees for p ≥ 1.

Algorithm: Trees to Prüfer Codes

Given a tree T on p vertices such that V (T) = {1, 2, . . . , p}. We want to construct the Prüfer code

(a1, . . . , ap−2) of T and a sister code (b1, . . . , bp−2), where ai ∈ {1, . . . , p} and bi ∈ {1, . . . , p− 1}.

Step 1. Let i = 1.

Step 2. Choose a leaf from the tree with the smallest label bi. Let ai be the unique neighbor of bi.

∗A. Cayley, A theorem on trees, Quart. J. Math., 23 (1889), 376-378.
†H. Prüfer, Neuer Beweis eines Satzes über Permutation, Arch. Math. Phys., 27 (1918), 742-744.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-3-3

Step 3. Remove the leaf bi, leaving a smaller tree.

Step 4. If there are only two vertices left, stop. Otherwise, let i := i+ 1 and go back to Step 2.

Example 3.3.10: Consider the labeled tree

labeled tree i bi ai

6

24

7

3

5

1

1 1 5

6

24

7

3

5 2 3 2

6

24

7

5 3 4 2

6

2

7

5 4 6 5

7

2 5
5 5 2

7

2

The Prüfer sequence of the tree is (5, 2, 2, 5, 2).

Notice that for any nontrivial tree, the graph K2 is obtained when the algorithm terminates. At each

stage of the algorithm, vertex p is never deleted.

Algorithm: Prüfer Codes to Trees

Given a Prüfer code (a1, . . . , ap−2). Firstly, let ap−1 = p. Thus we have the augmented sequence

(a1, . . . , ap−2, ap−1). If we know the sister sequence (b1, . . . , bp−2, bp−1), then we can construct the tree

because the p− 1 edges a1b1, . . . , ap−1bp−1 were fixed.

Step 1. Let i = 1 and let B = {1, 2, . . . , p− 1}.

Step 2. Let bi ∈ B be the smallest number not in (ai, . . . , ap−1).

Step 3. Remove bi from B.

Step 4. If i = p− 1, stop. Otherwise let i := i+ 1 and go back to Step 2.

Example 3.3.11: Consider the Prüfer sequence (5, 2, 2, 5, 2). Since the length of the sequence is 5, the

tree has 7 vertices. The augmented sequence is (5, 2, 2, 5, 2, 7).

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-3-4

i augmented sequence bi B

1 (5, 2, 2, 5, 2, 7) 1 2, 3, 4, 5, 6

2 (2, 2, 5, 2, 7) 3 2, 4, 5, 6

3 (2, 5, 2, 7) 4 2, 5, 6

4 (5, 2, 7) 6 2, 5

5 (2, 7) 5 2

6 (7) 2

3.2 Rooted Trees

A rooted tree is a tree T in which a special vertex r is singled out, which is called the root of the tree.

Such a rooted tree is denoted by (T, r).

Let (T, r) be a rooted tree. For any u ∈ V (T), let Pu be the unique path between r and u (see

Theorem 3.1.13). Then

1. The parent of u is the neighbor of u in Pu and denoted by Par(u).

2. Any neighbor of u other than Par(u) is called a child of u. The set of children of u is denoted by

Chi(u).

3. Two vertices are called siblings if they have the same parent.

4. Any vertex on Pu other than u is called an ancestor of u. The set of ancestors of a vertex u is denoted

by Anc(u).

5. A vertex v that has u as an ancestor is called a descendant of u. The set of descendants of a vertex u

is denoted by Des(u).

Definition 3.2.1: A rooted tree (T, r) in which the left/right order of every set of siblings is specified

is called an ordered rooted tree.

Definition 3.2.2: A binary tree is an ordered rooted tree in which each vertex has at most two children.

Each child of a vertex is called either the left child or the right child. A subtree rooted at the left (right)

child of vertex u is known as u’s left (right) subtree. By convention, the single vertex tree is considered a

“trivial” binary tree.

Definition 3.2.3: A regular or full binary tree is a binary tree that is trivial or satisfies the following

conditions:

1. There is exactly one vertex of degree two, namely the root.

2. All vertices other than the root have degree one or three.

Definition 3.2.4: Let (T, r) be a rooted tree. For u ∈ V (T), the distance dT (u, r) is called the level of

u in T and denoted by ℓT (u) or ℓ(u). The maximum level in (T, r) is called the height of (T, r). A rooted

tree of height k is called a (k + 1)-level tree.

Definition 3.2.5: A binary tree T of height k is called complete if for each level i ∈ {0, 1, . . . , k − 1} of

T have precisely 2i vertices, in which they are called full levels.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-3-5

Proposition 3.2.6: For any regular binary tree T on p vertices, the height ht(T) satisfies

⌈log2(p+ 1)− 1⌉ ≤ ht(T) ≤ p− 1

2
,

where ⌈x⌉ denotes the least integer not less than x.

3.4 Searching Trees

Depth-first Search

The idea of DFS is to start at a designated source vertex (called root) and explores a path in the

graph as far as possible. When there is no edge to go, then backtracks one level and tries again to go

deeper in another route. The process repeats until all vertices have been visited. Suppose a connected

graph is given. Applying the above exploration, it will obtain a spanning tree T of the graph and each

edge of T will be traversed exactly twice. Such a tree is called a depth-first search tree (or DFS tree).

Example 3.4.1: Consider the following tree. We start from a and want to visit all vertices at least

once.
Firstly, we imagine that we stand at vertex a. We can see that there are

two ways to go, one is vertex b and the other is vertex c. We arbitrary choose

one way, say b. Then we have two choices again: go to d or e. Suppose we

choose d, then we have three choices: go to i, j or k. Suppose we choose i,

then there is no way to go. Here we backtrack one level and back to vertex

a

lkji

g h

c

fd e

b

d. Vertex i has been visited, hence we have two choices: go to j or k. Repeat this process to choose vertex

one by one. Finally, the graph in Fig. 2 will be obtained, where the numbers indicated in the figure are

the order of this visit. This order is called a preorder traversal.

8

1211

1054 6

3

2

1

7 9

Figure 2: Preorder traversal of DFS.

Example 3.4.2: We want to find a spanning tree for the given graph by applying depth-first search.

In order to find the spanning tree, we have to choose some edges to keep the subgraph connected and

acyclic.

a

b

c

h

g
f

e

d

Suppose we start from a. We may choose b or d to visit. If we choose

b, then we can choose d or c from b. Suppose we choose to visit c and

then choose to visit d. At this moment, we cannot visit a or b because

it will create a cycle and so there is no way to go further. We have to

backtracks to c and choose e and so on. Finally, we obtain Fig. 3, where the numbers in the figure

represent the preorder traversal of the DFS spanning tree. The edges indicated by arrows are edges of

the DFS spanning tree.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-3-6

4

6

8

7

53

2

1

Figure 3: A DFS spanning tree.

We may use a tabular form to present the search.

DFS Spanning Tree Algorithm:

Step 1. Choose v as the root and R = ∅. Assign l(v) = (1, ∗); U = V (G) \ {v} (keeps track unlabeled

vertices); b∗ = v (current vertex) and i = 2.

Step 2. If N(b∗) ∩ U = ∅, then go to Step 3. If not, then choose w ∈ N(b∗) ∩ U (you may pre-order the

vertices first). Put b∗w in R; let l(w) = (i, b∗) and remove w from U . Let b∗ = w and add one to

i. Return to Step 2.

Step 3. Let b∗ (a new one) be the second coordinate of l(b∗) (backtrack).

Step 4. If b∗ = v and N(b∗) ∩ U = ∅, stop. A spanning tree of the component that contains the root v

has been found. Otherwise, repeat Step 2. If U = ∅, then the tree found is a spanning tree of G.

If U ̸= ∅, then G is disconnected.

Example 3.4.3: Given a graph G and its adjacency lists:

Vertex v N(v)

a b, e, f, g

b a

c d, g

d c, e, g

e a, d, f

f a, e, g

g a, c, d, f

Use d, g, c, b, a, f, e as the pre-ordering and we take d as the root.

R

↑
Pass Step N(b∗) ∩ U w b∗w l(w) U b∗ i

0 1 ∅ (1, ∗) g, c, b, a, f, e d 2

1 2 g, c, e g dg (2, d) c, b, a, f, e g 3

2 2 c, a, f c gc (3, g) b, a, f, e c 4

3 2#, 3 ∅ g

4 2 a, f a ga (4, g) b, f, e a 5

5 2 b, f, e b ab (5, a) f, e b 6

6 2#, 3 ∅ a

7 2 f, e f af (6, a) e f 7

8 2 e e fe (7, f) ∅

Recall the Robbins Theorem:

Theorem 2.5.10: A graph G has a strong orientation if and only if it is connected and has no bridges.

By using the Hopcroft-Tarjan Algorithm on an orientable graph, we can find a strong orientation on it.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-3-7

Hopcroft-Tarjan Algorithm: Given a connected graph G without bridge.

Step 1. Obtain a DFS spanning tree T of G by using DFS Spanning Tree Algorithm.

Step 2. Orient each edge of T towards the vertex with higher number.

Step 3. Orient each of the remaining edges of G towards the vertex with lower number.

Example 3.4.4: Given a graph G and its adjacency lists:

Vertex v N(v)

a b, e, f, g

b a, c

c d, g

d c, e, g

e a, d, f

f a, e, g

g a, c, d, f

Clearly the graph (see Fig. 4A) contains no bridges. If we use d, g, c, b, a, f, e as the pre-ordering and

take d as the root, then applying the DFS Spanning Tree Algorithm, we have a DFS spanning tree (see

Fig. 4B). Moreover, apply the Hopcroft-Tarjan Algorithm will obtain an orientation of the graph (see

Fig. 4C).

a

de

g

b

f c

(7,)

(4,)(5,)

(6,)
(3,)

(1,*)

g

cb

d

a

f

(2,)

a

de

g

b

f c

(7,)

(4,)(5,)

(6,)
(3,)

(1,*)

g

cb

d

a

f

(2,)

a

de

g

b

f c

A B C

Figure 4: An orientation of a graph.

If we use d, g, a, b, f, c, e as the pre-ordering and take d as the root, then we obtain

(7,)

(6,)

(1,*)

d

a

f

(2,)

g a(3,) (4,)

(5,)b

a

de

g

b

f c

Figure 5: An other orientation of a graph.

Breadth-first Search

The idea of BFS is to start at the root and then explores the neighbors of the original vertex. For

each of those neighbors, we investigate them one by one until all vertices have been visited. Suppose a

connected graph is given. Apply the above exploration, we will obtain a spanning tree of the graph. Such

a tree is called a breadth-first search tree (or BFS tree).

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-3-8

Example 3.4.5: We apply breadth-first search on the tree in Example 3.4.1. Starting from a, we can

go to b or c. Suppose we choose to go to b and then c. Afterwards, jump back to b and we can go to d or

e. Suppose we go to d first and then e. After that, we go back to c, and then visit f , g and h. Repeating

this process we have Fig. 6, where the numbers are the order of the search.

12

2

1

3

4
5

6
7 8

9 10 11

Figure 6: Preorder traversal of BFS.

Example 3.4.6: We find a spanning tree for the graph in Example 3.4.2 by using BFS. Starting from

a we go to b and then d. That is, we choose the edges ab and ad. Now we jump back to b and we can

only choose the vertex c. That is, we choose the edge bc. We cannot choose d because it will create a

cycle. Due to the search order, we jump to d but there is no way to go. Hence we jump to c. Repeat this

process we have Fig. 7 , which is a BFS spanning tree.

8
6

5

2

1
4

3 7

Figure 7: A BFS spanning tree.

3.5 Minimum Spanning Trees

Definition 3.5.1: Let G be a graph and let W : E(G) → R.

1. The ordered tuple (G,W) is called a weighted graph and the function W is called a weight function of

G.

2. If H ⊆ G, then W (H) =
∑

e∈E(H)

W (e) is called the weight of H in G.

Note that, if two vertices u and v in a weighted graph (G,W) are joined by more than one edge,

then we may delete the edges with larger weights. Also, we may delete all loops (if any) of the graph,

which does not affect the optimal tree. Moreover, if two vertices u and v in a weighted graph (G,W) are

not adjacent, then any spanning tree does not contain the edge uv. Hence, if we add the edge uv in G

and define W (uv) = ∞, then it does not affect the optimal tree too. Therefore, we may assume all the

weighted graph being considered is a weighted complete graph and the codomain of the weight function

is R ∪ {∞}.

Definition 3.5.2: Let (G,W) be a weighted complete graph of order p. We define a p × p matrix C,

whose row and column are named by the vertices of G as follows: For u, v ∈ V (G), the (u, v)-entry of C

is defined by W (uv). Such a matrix is called the cost matrix of (G,W).

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-3-9

Definition 3.5.3: For a connected weighted graph (G,W), a spanning tree T with the minimum weight

W (T) is called a minimum spanning tree or optimal tree.

Two algorithms for finding minimum spanning tree will be introduced, which are Kruskal’s algorithm

and Prim’s algorithm. The following algorithm, which is based on BFS, was proposed by Joseph B. Jr.

Kruskal‡. He was a student of Roger C. Lyndon and Paul Erdős at Princeton University.

Kruskal’s Algorithm: Given a weighted (simple) graph G of order p. Let L be a list of edges that have

been pre-sorted by weight in ascending order.

Step 1. S = ∅.

Step 2. Let e be the next edge on the sorted list L with e ̸∈ S and the edge-induced subgraph G[S ∪ {e}]
is acyclic. Let S := S ∪ {e}.

Step 3. If |S| = p− 1, stop. Otherwise, return to Step 2.

Theorem 3.5.4: Let G be a weighted connected graph and let T be a subgraph of G obtained by Kruskal’s

algorithm. Then T is a minimal spanning tree of G.

Example 3.5.5: Consider the graph

E

D C

A

B

8

2 7

6

9 4

5849

According to Kruskal’s algorithm we choose AE first. And then we choose AC or CE. Suppose we

choose CE, then we cannot choose AC because it will create a triangle. Hence we choose BC. If we

choose BE, then it creates a triangle. The next edge with smallest weight is AB. However, if we choose

it, then a 4-cycle is created and thus we can only choose BD or CD. If we choose BD, then we obtain

the following graph.

A

E

4

D C

B

2

58

Its weight is 2 + 4 + 5 + 8 = 19.

Example 3.5.6: Apply Kruskal’s Algorithm to the following weighted graph.

1
2

1

e

ba 2

4

4

5
1

5

4
1

d

f

g

c

‡J.B. Jr. Kruskal, On the shortest spanning subtree of a graph and travelling salesman problem, Proc. Amer. Math.

Soc., 7 (1956), 48-50.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-3-10

We will get a minimal spanning tree

1
1

e

ba 2

4

1

g

1

d

f

c

R.C. Prim modified Kruskal’s algorithm and provided the following algorithm§.

Prim’s Algorithm Given a weighted (simple) graph G of order p.

Step 1. Select a vertex v and let V = {v}, E = ∅.

Step 2. Among all u ̸∈ V , let e = uw be a minimum weight edge, where w ∈ V . Let V := V ∪ {u} and

E := E ∪ {uw}.

Step 3. If |E| = p− 1, then stop. Otherwise, return to Step 2.

Theorem 3.5.7: Let G be a weighted connected graph and let T be a subgraph of G obtained by Prim’s

algorithm. Then T is a minimal spanning tree of G.

The Prim’s algorithm usually apply in tabular form. Consider Example 3.5.5 again.

Example 3.5.8: We start from the cost matrix.

A B C D E

A ∗ 7 4 9 2

B 7 ∗ 5 8 6

C 4 5 ∗ 8 4

D 9 8 8 ∗ 9

E 2 6 4 9 ∗

Suppose we choose B first. We have to check the vertices that are adjacent to B. Which means we

have to look at the numbers in the column B. Since the other end point of the considered edges is not

the vertex B, we need not look at the row B. Thus we delete the row B from the matrix.

A B C D E

A ∗ 7 4 9 2

C 4 5 ∗ 8 4

D 9 8 8 ∗ 9

E 2 6 4 9 ∗

The underlined vertex (now is B) is the end point(s) of the chosen edge. The boxed number indicate the

chosen edge in the following step.

Hence we choose the edge BC. Since the next chosen edge must be start at B or C, we only look at

columns B and C as well as the other end of such edge is neither B nor C. Therefore, row C may be

deleted.
A B C D E

A ∗ 7 4 9 2

D 9 8 8 ∗ 9

E 2 6 4 9 ∗

§R.C. Prim, Shorest Connection Networks and Some Generalization, Bell System Tech. J., 36 (1957), 1389-1401.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-3-11

Repeat the above process, we have
A B C D E

D 9 8 8 ∗ 9

E 2 6 4 9 ∗

A B C D E

D 9 8 8 ∗ 9

Finally we have

A

E

8
D C

B

2

4

5

which is the minimal spanning tree (with weight 19) of G.

Notice that it is different from the spanning tree obtained in Example 3.5.5. It shows that minimal

spanning tree is not unique.

Example 3.5.9: Consider the Example 3.5.6 again. Suppose we start from a. We have

a b c d e f g

b 2 ∗ ∞ 4 ∞ ∞ 4

c ∞ ∞ ∗ 5 ∞ 5 1

d 2 4 5 ∗ 1 ∞ ∞
e 1 ∞ ∞ 1 ∗ ∞ ∞
f 1 ∞ 5 ∞ ∞ ∗ 4

g ∞ 4 1 ∞ ∞ 4 ∗

ae

a b c d e f g

b 2 ∗ ∞ 4 ∞ ∞ 4

c ∞ ∞ ∗ 5 ∞ 5 1

d 2 4 5 ∗ 1 ∞ ∞
f 1 ∞ 5 ∞ ∞ ∗ 4

g ∞ 4 1 ∞ ∞ 4 ∗

af

a b c d e f g

b 2 ∗ ∞ 4 ∞ ∞ 4

c ∞ ∞ ∗ 5 ∞ 5 1

d 2 4 5 ∗ 1 ∞ ∞
g ∞ 4 1 ∞ ∞ 4 ∗

ed

a b c d e f g

b 2 ∗ ∞ 4 ∞ ∞ 4

c ∞ ∞ ∗ 5 ∞ 5 1

g ∞ 4 1 ∞ ∞ 4 ∗

ab

a b c d e f g

c ∞ ∞ ∗ 5 ∞ 5 1

g ∞ 4 1 ∞ ∞ 4 ∗
bg

a b c d e f g

c ∞ ∞ ∗ 5 ∞ 5 1
gc

We get the same result as Example 3.5.6.

Prepared by Prof. W.C. Shiu MMAT5380 Graph Theory and Networks-19/20-3-12

