Sunday, 11 March 2018

8:32 AM

Both X, A are compact ACX is not closed

Fact. Given a compact X and ACX

A is closed \Longrightarrow A is compact

??? condition

Which good property that lacks?

is not Hausdorff.

Theorem. Let X be Hausdorff and ACX.

A is closed — A is compact.

Proof will be given later.

Corollary Let X be compact Hausdorff, ACX.

A is closed \(\iftrale A \) is compact

Theorem. Let X be compact and Y be Handorff. If $f: X \longrightarrow Y$ is a continuous bijection then f is a homeomorphism. continuity of f is automatic. Take any $U \in J_X$ wish. $(f^{-1})^{-1}(U) \in J_Y$ Proof. Take any closed FCX wish f(F) cy is closed F is compact $\Longrightarrow f(F)$ is compact continuous timage

Lect16-p3

Sunday, 11 March 2018

8:35 AM

Theorem. A is compact X is T2 A is closed.

Proof. To show A is closed What can we do?

> Either ACA or XIAe Jx No idea

xeXIA, aeA use Hausdorff

Let x ∈ X \ A, for any a ∈ A

∃ Ua, Va ∈ Jx such that $\frac{\omega}{x}$ $\frac{\omega}{a}$ $\frac{\omega}$

Then $g = \{V_{\alpha} \subset X : \alpha \in A\}$, Ug DA

Mar 12, Monday, 2018

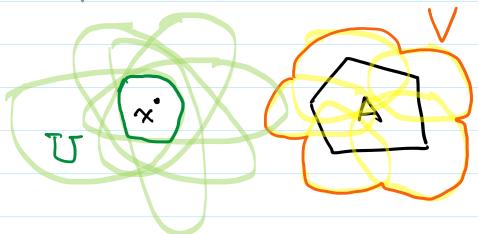
By compactness of A, Fa,az,...,aneA

 $V = \bigcup \{V_{a_1}, V_{a_2}, \dots, V_{a_n}\} \supset A$

Correspondingly, we have

 $U = \bigcap \{U_{\alpha_1}, U_{\alpha_2}, ..., U_{\alpha_n}\} \in J_X$

finite intersection



Obviously XETCXIA

As XEXIA is arbitrary, XIAEJX

Actually proved: Let X be Hausdorff.

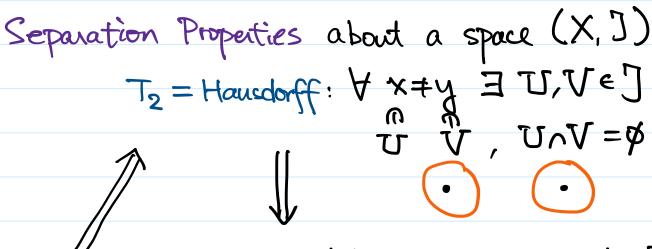
V compact ACX, Yx&A

∃ U, V ∈ Jx such that

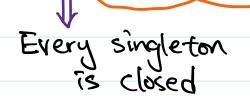
xeV, ACV, UnV = Ø.

Sunday, 11 March 2018

10:31 AM



$$T_3 = T_1 + regular$$
 $T_1 : \forall x = y = T_1, \forall \in J$
 $x \in U \setminus V$
 $y \in V \setminus U$



Regulan: Y closed FCX, Y-x&F, 3 U, V&J
FCU, xeV, UnV = Ø

Normal: Write the definition as exercise

Most commonly used: T1, T2, T4

Others: completely regular = T3.5

perfectly regular = To

About compactness and separation, what is the overall picture?

arbitrary, thus X is regular + T2

₩ T3

Not yet finished, how to proceed?

Strength of compact Hausdorff space.
From above: automatically regular + T2, cp
Given a closed set and another
disjoint closed set 🗆
Compact
V x∈□, x
determines an open cover for \square , and finite subcover
Hence, for aubitrary disjoint closed
disjoint closed > 1
Conclusion. In a compact space, $T_2 \Leftrightarrow T_3 \Leftrightarrow T_1$
Advantage of Regular or Normal Spaces
Advantage of Regular or Normal spaces Take any x ∈ U with U ∈ J
Then $x \notin X \setminus U$ closed in X

Mar 12, Monday, 2018

X is regular .: -] ·x

 $U_i \cap V_i = \emptyset$ i.e., $U_i \subset X \setminus V_i \subset U$

closed

· KE VIC VIC V

Iteratively,

 $x \in \cdots \cup_n \subset \cup_n \subset \cdots \subset \cup$

When X is normal, same argument norks for any closed set FCUEJ to have

 $F \subset \cdots \subset \mathcal{U}_n \subset \mathcal{U}_n \subset \cdots \subset \mathcal{U}$

Tietz Extension Theorem

Exercise: Write the statement

Urysohn Lemma. A space X is normal

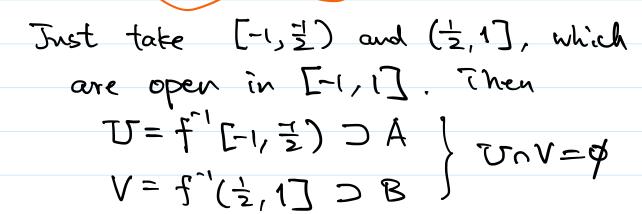
if and only if

Y closed A, BCX with A OB = \$

] continuous f: X -> [-1,1] such that f/A = -1 and f/B = 1

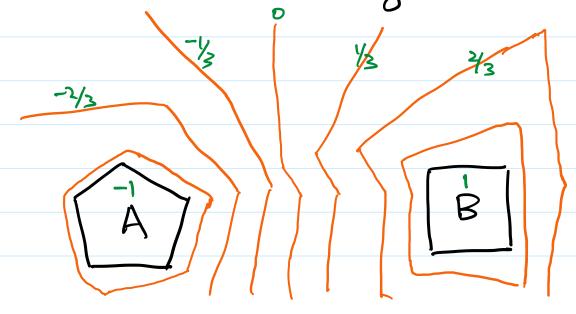
Let A, BCX be closed, AnB=\$

wish:



Idea of \Rightarrow Remember that we proved this for a metric space before, where $f(x) = \frac{d(x,A) - d(x,B)}{d(x,A) + d(x,B)}$

The "level sets" of f(x) may be helpful to our understanding



Start with ACXIB = U, EJ, From previous discussion,

We have
$$A \subset U_1 \subset U_2 \subset U_1 = X \setminus B$$

How to proceed?

得寸進尺

closed open

But then, where to work on next?

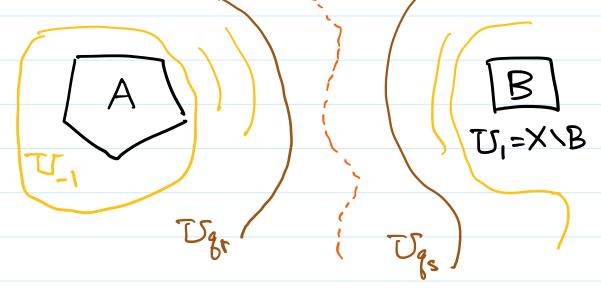
We need a systematic procedure. Write Qn(-1,1) = { z, 2, ..., 2, ... }

For n=1, take g_1 , so $-1 < g_1 < 1$, get $A \subset U_1 \subset U_2 \subset U_3 \subset U_4 \subset U_1 = X \setminus B$

This started the following situation:

I Uq, Uq2, ..., Uqn e J such that

Next, take $g_{n+1} \in \mathbb{Q} \cap (-1,1)$, let $g_r = \max \{g_1, ..., g_n < g_{n+1}\}$ $g_s = \min \{g_1, ..., g_n > g_{n+1}\}$



By this, we have the following.

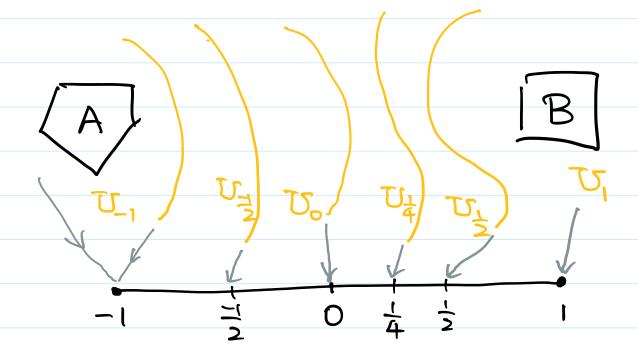
- · Y ge Qn[-1,1], Uge]
- · If p, g ∈ Qn[-1,1] and p<q

AC UPCUPCU3CU1=X1B

Mar 12, Monday, 2018

6:41 PM

Define f(x) = inf {qeQnE-1,1]: xeUg}



Technical step: Verify that f is continuous

Let $(a_1b) \subset [-1,1]$ or [-1,b) or $(a_11]$ Wish: $f^{-1}(a_1b)$ is open

Take any $x \in f^{-1}(a_1b)$, i.e., $f(x) \in (a_1b)$ Claim: $x \in U_q \setminus U_p$ for suitable P < qand $f(U_q \setminus U_p) \subseteq (q, b)$.