Sunday, 4 March 2018

3:37 PM

Definition (Heine-Borel). Let (X, J) be a space.

A set $K \subseteq X$ is compact if $g \subset J$ and $Ug \supset K$,

I finite $F \subset g$ such that $UF \supset K$.

Equivalent: K is compact wrt the induced topology JIK

Example. ACRn is compact \iff A is closed and bounded.

I R>o such that $A \subset \left\{ \times \in \mathbb{R}^n : \| \times \| \leqslant R \right\}$

îtself a compact space

The above becomes:

A Compact set in Rn is compact A is closed

Theorem. Let X be compact and $A \subset X$. A is closed \Rightarrow A is compact. Proof. Let g C J and Ug DA.
Wish. Find a finite F C g, UF DA.

Try to get from an open cover for X.

Since A is closed, i.e., XIA & J

GUSXIAS CJ covera X

J fivite FUSXIAS covering X

and F is a fivite subcover for A.

Example. Let $X = \frac{1}{2}$ and $A = \frac{1}{2}$

Then X is compact (why?)
and A is compact (why?)

and A is compact (why?)
but A is not closed (really?)

Theorem. Let $f: X \to Y$ be continuous. If ACX is compact, then f(A)CY is so.

2:39 PM

Theorem. Let $f: X \longrightarrow Y$ be continuous. If $A \subset X$ is compact, then $f(A) \subset Y$ is so. Proof Let $g \subset J_Y$ with $Ug \supset f(A)$. Wish. Get a finite subcover $F \subset g$ from the compactness of A.

Define $\mathcal{E} = \{f'(V) : V \in g\} \subset J_X$ why?

Then UEDA

Let acA, fratefrate Ug : 3 Veg with frate V -: acf'(V) EE

By compactness of A, I finite subcover {f'(V1), f'(V2), --, f'(Vn)} CE

Then $\mathcal{F} = \{V_1, \dots, V_n\} \subset \mathcal{G}$ is a finite subcover for f(A).

Consequences

$$\mathbb{R}$$
 is not $\Leftrightarrow S' = \mathbb{R}/\mathbb{Z}$ is compact

(2)
$$P = TTX_{\alpha}$$
 is compact \Rightarrow Each $X_{\beta} = T_{\beta}(P)$ is compact is compact

useless

Is the meaningful "=" true?

Theorem. If Xx is compact for each XEI then the product $P = \prod X_{\alpha}$ is compact.

Finite I: Proof will be given.

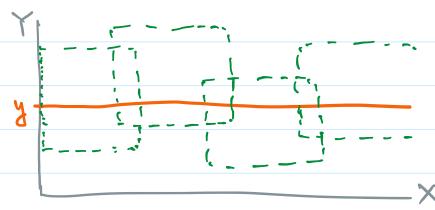
Infinite I: Tychonoff Theorem.

Theorem. Let (X, Jx), (Y, Jy) be compact. Then the product space XXY is compact. Proof. Let GEJXXY satisfy UG=XXY. Without loss of generality, assume each

set in g is of the form UXV, UEJX, VEJY

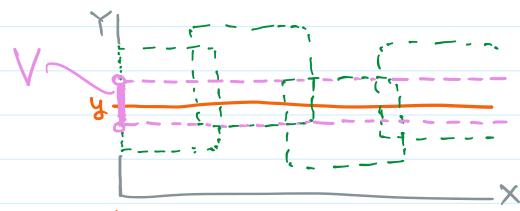
The general situation is a union of such sets.

For any fixed y ∈ Y, Xx {y} is compact and UG DXXY DXX Tyl. There is a finite subcover Fy = } Uk x Vk = k = 1, ..., ny



What can we conclude?

Is this picture true?



That is, $\exists \bigvee^{8} \in \exists \gamma$ such that $\bigvee^{n}_{k=1} \bigcup^{n}_{k} \times \bigvee^{n}_{k} \supset \times \times \bigvee^{3}_{k} \supset \times \times \bigvee^{3}_{k}$ Almost, $\bigvee^{3}_{k=1} \bigvee^{3}_{k} \in \exists \gamma$

Then, how to proceed?

Above is true for cerbitmany yell,

EV8: yell is an open cover for I

There is a finite subcover

SV91, V92, ..., V9m/ for I.

 $\mathcal{F} = \mathcal{F}^{3i} \cup \mathcal{F}^{3i} \cup \cdots \cup \mathcal{F}^{3m}$ $= \left\{ \bigcup_{k=1}^{k} V_{k}^{1} : k=1, \cdots, n_{3i} ; l=1, \cdots, m \right\}$

Open cover: $g \subset J$ with $Ug \supset K$ The negation?? $\sim (Ug \supset K) \iff K \setminus Ug \neq \emptyset$ $\cap \{K \setminus G : G \in g\}$

Family of closed sets

Compactness: If $G \subset J$ with $UG \supset K$ then \exists finite $F \subset G$ with $UF \supset K$.

What is the contrapositive?

K is compact (=>) For every G of closed sets in K, if every finite ACG has NH + \$ then NG + \$

Temporary Notation. Let ACP(K)
Denote $\overline{A} = \{ \overline{A} \subset K : A \in A \}$

K is compact \iff For every $A \subset P(K)$, if every finite $A \subset A$ has $\cap A \neq \emptyset$.

Mar 07, Wednesday, 2018

5:52 PM

Try to use this version to prove X,Y compact \Rightarrow X×Y compact Let $A \subset P(X\times Y)$ which satisfies every finite $A \subset P(A + A)$

FCIP: Finite closure intersection property

Project every sets to X and Y and get $A_X = \{\pi_X(A) : A \in A\}$ Verify $A_Y = \{\pi_Y(A) : A \in A\}$ has FCIP

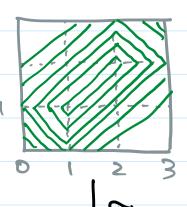
:. Buth nAx +ø, nAy +ø ?? (x,y) enA

Example. X=Y=[0,3] are compact $A \subset P(X\times Y)$ consists of sets below

It has FCIP.

In fact, Fn > Fn+1

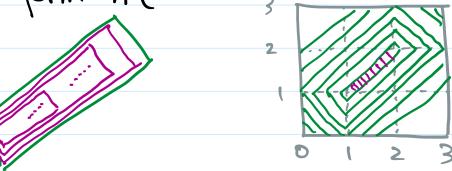
 $n = F_{\text{max}}$



Ax and Ay contains intervals D[1,2] in $A_x = A_y = [1,2]$ Now, we know that $1 \in A_x$, $2 \in A_y$ Do we have $(1,2) \in A_y$

Crucial Idea. V of with FCIP, I MJA also has FCIP, but better.

For example, each set & A, add these sets



Then $\Omega \overline{M}_{x} = 313 = \Omega \overline{M}_{y}$ and $U_{1}(1) \in \Omega \overline{M} \subset \Omega \overline{A}$

Essential Argument of Tychonoff.

For ACP(TTXx) having FCIP,

use Zorn's Lemma to get a maximal

A $\subset M \subset P(\prod_{x \in I} X_{\alpha})$ having FCIP. Then $M_{\alpha} = \{\pi_{\alpha}(M) : M \in M\}$ also FCIP

By compactness of Xx, 3 xx & n Mx

Maximality of M ⇒ (xx) ∈ NM C NA