Lect08-20180131

Monday, 29 January 2018 3:26 PM

Our current issue. Given (X,J) and $A\subset X$. Whether a continuous $f : A \longrightarrow Y$ has a continuous extension $\widehat{f}: X \longrightarrow Y$. known. 1 If A is dense then \widetilde{f} is unique. 2 If X is special (normal, metric, \mathbb{R}^n) A is closed, $Y = [-a, a] \subset \mathbb{R}$ then Yes. 13 To be discussed, réquired another concept. Question. How do no define completeness? Definition. A metric space (x, d) is
complete if every Canchy sequence Remark. Both Canchy sequence and 50
completeness are only defined with metric Proposition In a complete metric space X
YCX is complete \Longleftrightarrow Y is closed. "S" Rewrite Y is closed, i.e., \overline{Y} CY G_{\perp} ($H_{0\omega}$ to use sequence!
 G_{\perp} ($H_{0\omega}$ to use sequence!
 H_{\square} (y_n) in Y , $y_n \rightarrow x$ in X (y_n) is Camely on in X The in F $\begin{array}{rcl}\n\text{Im}\quad & \text{Im}\quad & \$

Lect08-p2

Monday, 29 January 2018 3:55 PM

Definition. A mapping $f: (x, d_x) \longrightarrow (x, d_y)$ is uniformly continuous if \forall 220 \exists 820 such that $\forall x_1, x_2 \in X$ with $d_X(x_1, x_2) < \delta$, $d_{Y}(\frac{f(x_{1})}{f(x_{2})}) < \epsilon$. Existence Theorem. Given (X,d_X) , (Y,d_Y) where Y is complete and $A=X$. If f: A -> Y is uniformly continuous then \exists unique uniformly continuous
extension $\tilde{f} = \tilde{X} \longrightarrow Y$, i.e., $\tilde{f} | A \equiv f$. Idea of proof. Let $xeX = \overline{A}$ Wich to define $\vec{f}(x)$. Imetric // define converges Converges
 \exists (am) $n=1$ in A

Converges
 \exists (am) $n=1$ in A
 \downarrow \downarrow $d_{x}(a_{m}^{x},a_{n}^{x})<\frac{1}{\text{uniform}}$ $d_{y}(f(a_{m}^{x}),f(a_{n}^{x}))$
continuous Question. The above argument has choice!

Lect08-p3

Jan 30, Tuesday, 2018 6:43 PM

More rigorous treatment. Recall Uniform continuity of $\tilde{f}: (X,dx) \longrightarrow (Y,dy)$ Aim \forall E>0 \exists S>0 such that if $d_{x}(x_{1},x_{2}) < \delta$ then $d_{y}(f(x_{1}), f(x_{2}) < \epsilon)$ Converges/ $\frac{2}{3}$ $f(a_n^{\prime\prime})$ unif. \Rightarrow $f(a_m^{x_1})$ ያ
የ a_{m}^{χ} continuous K ϵ /3 \Rightarrow For $\frac{\epsilon}{3}$ >0
 $\frac{\epsilon}{3}$ yo, Next aim converges/ δ δ $\boldsymbol{\chi}_{\boldsymbol{\lambda}}$ Need to choose $\frac{1}{\sqrt{2}}$ $-\xi = \frac{\eta}{3}$

