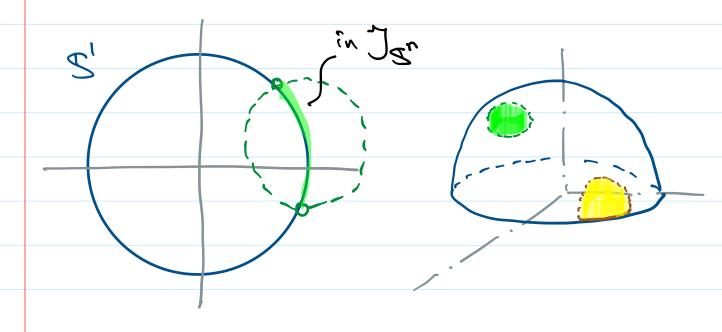
Lect06-20180124

Monday, 22 January 2018 11:34 AM

Given a topological space (X,J) and ACX. Hope to défine a topology for A Which is coming from X, "inherited".

Definition. IIA = {GnA: Ge]} is called the subspace topology or relative topology or induced topology on A from X. Exercise. Verify (71) & (72).

Example $S^{n-1} = \{x \in \mathbb{R}^n : \|x\| = 1\} \subset \mathbb{R}^n$, J_{std}



Jan 24, Wednesday, 2018

5:20 PM

$$+ A = [a,b]$$
 $[a,a+\epsilon), (c,d), (b-8,b]$

form a base for I/ [a,b]

- which one is open in A? (3,4) or [3,4)
- Is the set (1,2) closed in A?

Question. What are the induced topologies on Q from (R, Jstd) or (R, Ju)?

From the above, given P=ACX in (X, J) PEJ ** PEJA

Simple condition. If A e J then P\(A\) and P\(J\) A\(\Rightarrow\) P\(J\).

Converse? If second line then AEJ?

Monday, 22 January 2018

12:00 PM

Hereditary Issues.

Let Z C A C X with (X, I)

Three topologies,

J|A, J|Z, (J|A)|Z

Intersection is transitive (米)へ(4つ女) = (米八人)へ女

Open, closed, interior, closure, etc.

 $Int_{A}(Z) = Int_{X}(Z) \cap A$

 $Cl_A(z) = Cl_X(z) \cap A$

Seguence convergence

Future discussion

Mapping restrictions

f: X -> Y / F|A: A -> Y

continuous continuous

Key idea. Let Ve Jy

wish: (+1/) (V) &]/A

f-(v) ~ A

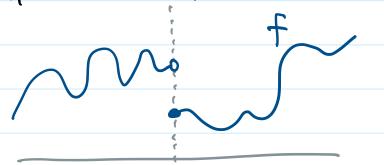
Mapping Extension

Clearly,
$$f|_{A}:A \rightarrow Y \iff f:X \rightarrow Y$$
continuous
continuous

What if we have

$$f|_{Aa}: A_{a} \longrightarrow Y$$
 continuous, $a \in I$ $A_{a} = X$

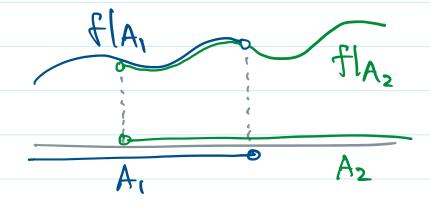
Bad Example. On
$$(\mathbb{R}, J_{std})$$
,
 $A_1 = (-\infty, 0)$, $A_2 = [0, \infty)$



Both flA, flAz one continuous

Any Remedy?

fla, fla continuous => f continuous



Proposition. Given $f:(X,J) \longrightarrow Y$ and $X = \bigcup_{\alpha \in J} G_{\alpha}$ for $G_{\alpha} \in J$.

If each $f|_{G_{\alpha}}: G_{\alpha} \longrightarrow Y$ is continuous then so is $f: X \longrightarrow Y$.

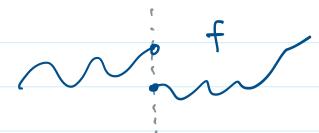
Key idea.

$$f'(V) = f'(V) \cap \bigcup_{\alpha \in I} G_{\alpha}$$

$$= \bigcup_{\alpha \in I} \left[f'(V) \cap G_{\alpha} \right] = \bigcup_{\alpha \in I} \left(f|_{G_{\alpha}} \right) (V)$$
open in G_{α} , need corre

Equivalent Version. Given $X = a \in I$ for an above. If $f \alpha : G \alpha \longrightarrow Y$ is a family of continuous mappings satisfying $f \alpha \equiv f \beta$ on $G \alpha \cap G \beta$ then \exists continuous $f : X \longrightarrow Y$ extension, i.e. $f \mid G \alpha \equiv f \alpha$ Trivial to define the switable f.

Bad becomes Good!



It is continuous on (R, J,R).

What about union of closed sets?

Proposition. Let A,B be closed and $X=A\cup B$. If both $f|_A, f|_B$ are continuous then $f: X \longrightarrow Y$ is so.

Proof Almost the same on before $Simply f'(H) = f'(H) \cap (A \cup B)$ $= (f|_A)'(H) \cup (f|_B)'(H)$

Exercist.

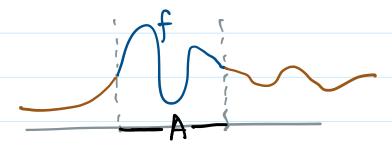
* Write the equivalent version.

* Give examples about infinite union of closed sets, some works some doesn't.

Harder Question (for later

Only given $A \subset X$ and continuous $f : A \longrightarrow Y$. Do we have continuous $f : X \longrightarrow Y$, $f |_{A} = f$?

existence



X=S' $A=S'\setminus\{*\}$ f does

not

exist