Monday, January 8, 2018 10:49 PM

One important goal of topology: To study limit, convergence, approximation

Example. In the context of sequence convergence in a metric space, $x_n \rightarrow x$ in (x,d) as $n \rightarrow \infty$

if A €>0, 9(xn,x)< €

 $x_n \in B(x; \varepsilon)$

open ball with center x and radius E.

Why do we nant to discard metric? How should it be done naturally?

Example (1)

For a metric space (X,d), we have d(x,y) for points $x,y \in X$.

But, it is difficult to have natural d(A,B) for $A,B\subset X$

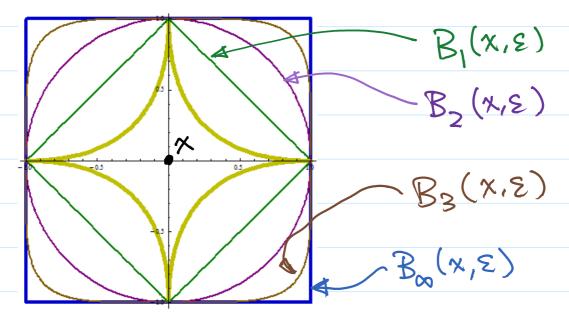
Monday, January 8, 2018

11:04 PM

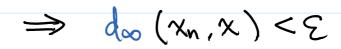
Example 2 lp-metric on R, 15 pER $d_{p}(x,y) = (|x_{1}-y_{1}|^{p} + |x_{2}-y_{2}|^{p})^{p}$ $(x_{1},x_{2}) \quad (y_{1},y_{2}) \quad \text{or} \quad |x_{2}-y_{2}|^{p}, \quad p=0$ $\max\{|x_{1}-y_{1}|, |x_{2}-y_{2}|\}, \quad p=0$ Exercise (done in MATH 3060) Let (xn)new, x both in \mathbb{R}^2 . Y ISP, q ERU(0), xn -> x in lp-metric Main Idea (shown by P=1, q=00) $x_n \rightarrow x$ in l_i -metric $\Leftrightarrow \forall \varepsilon > 0 \cdot \cdots d_1(x_n, x) < \varepsilon$ $\frac{1}{2}d_{1}(x_{n},x) \leq d_{\infty}(x_{n},x)$ $\Leftrightarrow \forall \varepsilon > 0 \dots, d_{\infty}(x_n, x) < \varepsilon$

Monday, January 8, 2018 11:24 PM

Let us look at pictures

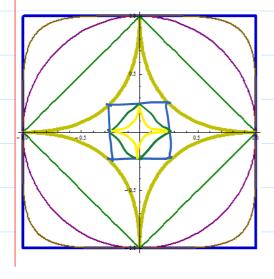


 $d_1(x_n,x) < \varepsilon \iff x_n \epsilon$



 $d\infty(x_n,x)<\frac{\xi}{2}\Longrightarrow x_n\in$

 $\Rightarrow d_1(x_n,x) < \varepsilon$



Convergence augument still work for

without Δ -inequality

Conclusion. To discuss $x_n \rightarrow x$, metric is not essential.

Instead,

* Neighborhoods of x are important * More pricise, we need a neighborhood system at each x ∈ X

We will mention (it) later.

A more "elegant" approach is used.

Definition. Let X be a nonempty set.

A set JCP(X) is a topology for X

if it satisfies the following

The union of any sets in I is still in I

TI PEJ

(T2) The intersection of any finite number of sets in J is still in J.

(72) $\times \epsilon$

(T1+T2) I is closed under arbitrary union and Finite intersection

7:24 AM

We say that a subset GCX is an open set wit J if GEJ.

Mathematical Expression

TT) \(\text{GCJ}, \(\text{UE} \in \text{J} \)

arbitrary \(\text{Tate the union}, \text{which is collection of a subsect of X Sets in \text{J}

Take $G = \emptyset$, $UG = \emptyset \in J$ (T1)

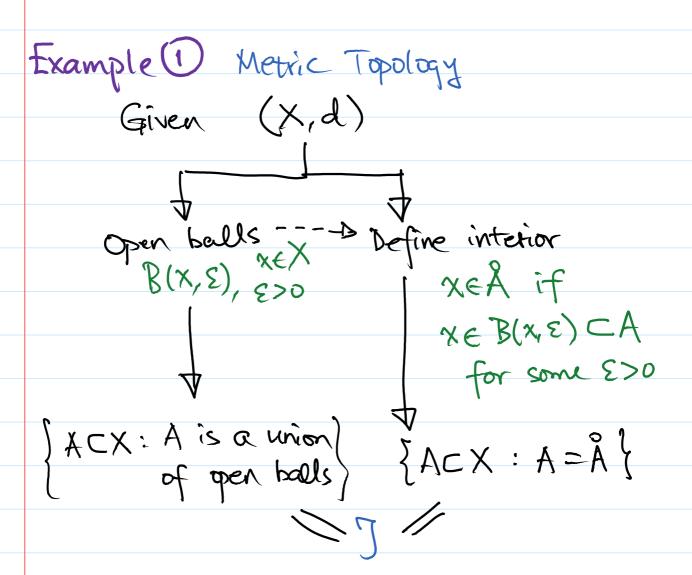
OR: Y family [GalacI of], WEIGHT]

(T2) ✓ finite f C J, N J ∈ J finite number Take their common of sets in J intersection

Take J=p, UJ=X EJ (T2)

OR: Y {G,, G2, ..., Gn} of J, \Gentler Gx \in J.

11:28 AM



Reason. Need to show
$$A=A$$
 \forall ACX
For arbitrary $x_0 \in A$
 $x_0 \in B(x_0, \frac{1}{2}) = \{x_0\} \subset A$
 \vdots $x_0 \in A$

11:45 AM

Example (3) Indiscrete Topology = {\$\psi, \times^2\$}

Cleanly, (T1) (T2) are valid.

Example (5). Co-countable Topology

Exercises

* Cofinite typology of a finite set * Co-countable topology of a countable set * Read the wany wany examples of topology in the textbrok.

11:50 AM

Practice 1

Let X=R. Is this a topology? {\phi, R\gu\{(a-\epsilon, a+\epsilon): a\in R, \epsilon\guanger}

Practice 2

Let X=R and

J={p,R,[1,3],[2,4],[1,4],[2,3]}

Is the set [1,3] an open set?

Answer O

No. (71) is not satisfied.

Answer 2

Since I is a topology, yes, wrt I No, wrt standard topology of R

Question. We know that the Discrete Topology (PCX) comes from a metric. What about the Indiscrete Topology {\$\phi\$, \$\times\$?

9:06 PM

Special Feature of metric spaces

(Fiven (X, d) and $x \neq y \in X$ Then d(x,y) = r > 0 and $\frac{r}{3} > 0$ We have $x \in B(x,\frac{r}{3})$, $y \in B(y,\frac{r}{3})$ and $B(x,\frac{r}{3}) \cap B(y,\frac{r}{3}) = \emptyset$ need Δ -inequality

Definition. A topological space (X,J) is Hausdorff or T_2 if $\forall x \neq y \in X$ $\exists U, V \in J, x \in U, y \in V$, and $\forall x \in J = \emptyset$

Fact. Every metric space is Hausdorff.

Easy to see:

Indiscrete Topology with $\#X \ge 2$ and $J = \{\phi, R, [1,3], [2,4], [1,4], [2,3]\}$ both are not Handorff.

Hence cannot come from a metric.

Question

Is cofinite topology Hansdorff?