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Problem 1. Evaluate the indefinite integral∫
cos(5x)

1 + sin2(5x)
dx.

Solution. Recall that
∫

cos(x)dx = sin(x) + C, where C is a constant. Then we have∫
cos(5x)

1 + sin2(5x)
dx =

∫
1

5

d sin(5x)

1 + sin2(5x)
.

Since
∫

1
1+x2 dx = arctan (x) + C, let t = sin(5x), we have∫

1

5

d sin(5x)

1 + sin2(5x)
=

∫
1

5

dt

1 + t2
=

1

5
arctan (t) + C.

We then know that ∫
cos(5x)

1 + sin2(5x)
dx =

1

5
arctan

(
sin(5x)

)
+ C.

Problem 2. Evaluate the indefinite integral∫
sin3(5x) cos10(5x)dx.

Solution. Recall that through the Pythagorean Identity sin2(x) = 1−cos2(x). Then we know that sin3(5x) =
sin(5x)

(
sin2(5x)

)
= sin(5x)

(
1− cos2(5x)

)
. Substituting this into the integral we see∫

sin3(5x) cos10(5x)dx =

∫
sin(5x)

(
1− cos2(5x)

)
cos10(5x)dx.

Distributing just the cosines, this becomes∫
sin(5x)

(
cos10(5x)− cos12(5x)

)
dx.

Now use the substitution t = cos(5x) ⇒ dt = d cos(5x) = −5 sin(5x)dx, i.e., sin(5x)dx = − 1
5dt, then the

integral becomes∫ (
cos10(5x)− cos12(5x)

)
sin(5x)dx =

∫
(t10 − t12)(−1

5
)dt =

1

5
(
t13

13
− t11

11
) + C.

Reordering and back-substituting with t = cos(5x), we get∫
sin3(5x) cos10(5x)dx =

1

5
(
cos13(5x)

13
− cos11(5x)

11
) + C.
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Problem 3. Evaluate the integral ∫
sin4(x)dx.

Solution. This integral is mostly about clever rewriting of your functions. As a rule of thumb, if the power
is even, we use the double angle formula. The double angle formula says

sin2(θ) =
1

2
(1− cos(2θ)).

If we split up our integral like this ∫
sin2(x) · sin2(x)dx

We can use the double angle formula twice:∫
1

2
(1− cos(2x)) · 1

2
(1− cos(2x))dx

Both parts are the same, so we can just put it as a square:∫ (
1

2
(1− cos(2x))

)2

dx

Expanding, we get: ∫
1

4

(
1− 2 cos(2x) + cos2(2x)

)
dx

We can then use the other double angle formula

cos2(θ) =
1

2
(1 + cos(2θ))

to rewrite the last term as follows:

1

4

∫
1− 2 cos(2x) +

1

2
(1 + cos(4x))dx

=
1

4

(∫
1dx−

∫
2 cos(2x)dx+

1

2

∫
1 + cos(4x)dx

)
=

1

4

(
x−

∫
2 cos(2x)dx+

1

2

(
x+

∫
cos(4x)dx

))
We will call the left integral in the parenthesis Integral 1, and the right on Integral 2.

Integral 1:
∫

2 cos(2x)dx
Looking at the integral, we have the derivative of the inside, 2 outside of the function, and this should

immediately ring a bell that you should use u-substitution. If we let u = 2x, the derivative becomes 2, so we
divide through by 2 to integrate with respect to u∫

6 2 cos(u)

6 2
du =

∫
cos(u)du,

Integral 2:
∫

cos(4x)dx ∫
cos(u)du = sin(u) = sin(2x).

It’s not as obvious here, but we can also use u-substitution here. We can let u = 4x, and the derivative will
be 4

1

4

∫
cos(u)dx =

1

4
sin(u) =

1

4
sin(4x).
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Completing the original integral Now that we know Integral 1 and Integral 2, we can plug them back into our
original expression to get the final answer

1

4

(
x− sin(2x) +

1

2

(
x+

1

4
sin(4x)

))
+ C

=
1

4

(
x− sin(2x) +

1

2
x+

1

8
sin(4x)

)
+ C

=
1

4
x− 1

4
sin(2x) +

1

8
x+

1

32
sin(4x) + C

=
3

8
x− 1

4
sin(2x) +

1

32
sin(4x) + C.

Problem 4. Let a be a nonzero real number. Evaluate the integral∫
−7x

x4 − a4
dx.

Solution. As a is a nonzero real number, we divide the numerator and denominator by a4 as∫ −7x
a4

(xa )4 − 1
dx.

Similar to Problem 1, let t = x
a , we get∫ −7x

a4

(xa )4 − 1
dx =

−7

a2

∫ x
a

(xa )4 − 1
d(
x

a
) =
−7

a2

∫
t

t4 − 1
dt.

Note that
∫
tdt =

∫
1
2dt

2, we rewrite this integral as

−7

a2

∫
t

t4 − 1
dt =

−7

2a2

∫
1

t4 − 1
dt2.

Let k = t2, we have
−7

2a2

∫
1

k2 − 1
dk.

With the partial decomposition, we know that

−7

2a2

∫
1

k2 − 1
dk =

−7

2a2

∫
1

2(k − 1)
− 1

2(k + 1)
dx =

−7

4a2
(ln |k − 1| − ln |k + 1|) + C.

Reordering and back-substituting with k = t2, we get

−7

4a2
(ln |t2 − 1| − ln |t2 + 1|) + C.

Reordering and back-substituting with t = x
a , we get the final answer

−7

4a2
(ln |(x

a
)2 − 1| − ln |(x

a
)2 + 1|) + C.

Problem 5. Evaluate the integral when x > 0∫
ln
(
x2 + 11x+ 24

)
dx.

Solution. Integrate by parts using the formula
∫
udv = uv−

∫
vdu, where u = ln

(
x2 + 11x+ 24

)
and dv = 1.

Then we have

ln
(
x2 + 11x+ 24

)
x−

∫
x d
(

ln
(
x2 + 11x+ 24

) )
= ln

(
x2 + 11x+ 24

)
x−

∫
x

2x+ 11

(x+ 3)(x+ 8)
dx.
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Combine x and 2x+11
(x+3)(x+8) , the integral becomes

ln
(
x2 + 11x+ 24

)
x−

∫
2x2 + 11x

(x+ 3)(x+ 8)
dx

Note that (x+ 3)(x+ 8) = x2 + 11x+ 24, therefore the integral becomes

ln
(
x2 + 11x+ 24

)
x−

∫
2x2 + 11x

x2 + 11x+ 24
dx

Let 2x2+11x
x2+11x+24 be more simpler as

2x2 + 11x

x2 + 11x+ 24
=

2(x2 + 11x+ 24)− 11x− 48

x2 + 11x+ 24
=

2(x2 + 11x+ 24)

x2 + 11x+ 24
+
−11x− 48

x2 + 11x+ 24
,

Apply the constant rule, we have

ln
(
x2 + 11x+ 24

)
x−

∫ (
2 +

−11x− 48

x2 + 11x+ 24

)
dx = ln

(
x2 + 11x+ 24

)
x−

(
2x+ C +

∫
−11x− 48

x2 + 11x+ 24
dx

)
Write the fraction using partial fraction decomposition, the integral becomes

ln
(
x2 + 11x+ 24

)
x−

(
2x+ C +

∫
− 3

x+ 3
− 8

x+ 8
dx

)
Split the single integral into multiple integrals

ln
(
x2 + 11x+ 24

)
x−

(
2x+ C +

∫
− 3

x+ 3
dx+

∫
− 8

x+ 8
dx

)
Let u1 = x+ 3. Then du1 = dx. Rewrite using u1 and du1.

ln
(
x2 + 11x+ 24

)
x−

(
2x+ C − 3

∫
1

u1
du1 +

∫
− 8

x+ 8
dx

)
The integral of 1

u1
with respect to u1 is ln (|u1|).

ln
(
x2 + 11x+ 24

)
x−

(
2x+ C − 3 (ln (|u1|) + C) +

∫
− 8

x+ 8
dx

)
Let u2 = x+ 8. Then du2 = dx. Rewrite using u2 and du2.

ln
(
x2 + 11x+ 24

)
x−

(
2x+ C − 3 (ln (|u1|) + C)− 8

∫
1

u2
du2

)
The integral of 1

u2
with respect to u2 is ln (|u2|).

ln
(
x2 + 11x+ 24

)
x− (2x+ C − 3 (ln (|u1|) + C)− 8 (ln (|u2|) + C))

Simplify.
ln
(
x2 + 11x+ 24

)
x− 2x+ 3 ln (|u1|) + 8 ln (|u2|) + C

Substitute back in for each integration substitution variable.
Replace all occurrences of u1 with x+ 3.

ln
(
x2 + 11x+ 24

)
x− 2x+ 3 ln(|x+ 3|) + 8 ln (|u2|) + C

Replace all occurrences of u2 with x+ 8, then we get the final solution

ln
(
x2 + 11x+ 24

)
x− 2x+ 3 ln(|x+ 3|) + 8 ln(|x+ 8|) + C.

Problem 6. Suppose that f(1) = −10, f(4) = 8, f ′(1) = 9, f ′(4) = −7, and f ′′ is continuous. Find

the value of
∫ 4

1
xf ′′(x)dx
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Solution. Integrate by parts using the formula
∫
udv = uv −

∫
vdu, where u = x and dv = f ′′(x). Then

we have ∫ 4

1

xf ′′(x)dx

=xf ′(x)|41 −
∫ 4

1

f ′(x)dx

=xf ′(x)|41 − f(x)|41
=
(
4 · f ′(4)− 1 · f ′(1)

)
−
(
f(4)− f(1)

)
=4 · (−7)− 9− 8 + (−10)

=− 28− 9− 8− 10

=− 55

Problem 7. Evaluate the integral ∫ π/3

π/6

8 csc3(x)dx.

Solution. Integrate by parts using the formula
∫
udv = uv −

∫
vdu, where u = csc(x) and dv = csc2(x),

du = − csc(x) cot(x)dx, v = − cot(x), then

− csc(x) cot(x)−
∫

cot2(x) csc(x)dx.

Note that cot2(x) = csc2(x)− 1, we have

− csc(x) cot(x)−
∫ (

csc2(x)− 1
)

csc(x)dx = − csc(x) cot(x)−
∫ (

csc3(x)− csc(x)
)
dx.

Then ∫
csc3(x)dx = − csc(x) cot(x)−

∫
csc3(x)dx+

∫
csc(x)dx.

Let the right side −
∫

csc3(x) to the left,

2

∫
csc3(x)dx = − csc(x) cot(x) +

∫
csc(x)dx,

i.e., ∫
csc3(x)dx =

− csc(x) cot(x) +
∫

csc(x)dx

2
.

Note that
∫

csc(x)dx = ln(csc(x)− cot(x)) + C1, where C1 is a constant, then∫
csc3(x)dx =

− csc(x) cot(x) + ln(csc(x)− cot(x))

2
+ C.

Therefore∫ π/3

π/6

8 csc3(x)dx

=8
− csc(x) cot(x) + ln(csc(x)− cot(x))

2

∣∣∣π/3
π/6

=4(− csc(π/3) cot(π/3) + ln(csc(π/3)− cot(π/3)))− 4(− csc(π/6) cot(π/6) + ln(csc(π/6)− cot(π/6)))

=− 8

3
− 4 ln

√
3 + 8

√
3− 4 ln(2−

√
3)

=− 8

3
+ 8
√

3− 4 ln(2
√

3− 3)

Problem 8. A rumor is spread in a school. For 0 < a < 1 and b > 0, the time t at which a
fraction p of the school population has heard the rumor is given by

t(p) =

∫ p

a

b

x(1− x)
dx.
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(a) Evaluate the integral to find an explicit formula for t(p). Write your answer so it has only
one ln term.

∫ p
a

b
x(1−x)dx = .

(b) At time t = 0, five percent of the school population (p = 0.05) has heard the rumor. What is
a ? a = .
(c) At time t = 1, fifty-one percent of the school population (p = 0.51) has heard the rumor.
What is b ? b = .
(d) At what time has ninety-four percent of the population (p = 0.94) heard the rumor? t = .

Solution. We integrate to find∫
b

x(1− x)
dx = b

∫ (
1

x
+

1

1− x

)
dx = b(ln |x| − ln |1− x|) + C = b ln

∣∣∣∣ x

1− x

∣∣∣∣+ C1,

then

t(p) =

∫ p

a

b

x(1− x)
dx = b ln

(
p

1− p

)
− b ln

(
a

1− a

)
= b ln

(
p(1− a)

a(1− p)

)
.

(b) We know that t(0.05) = 0, so

0 = b ln

(
0.05(1− a)

0.95a

)
.

But b > 0 and lnx = 0 means x = 1, so

0.05(1− a)

0.95a
= 1, or 0.05(1− a) = 0.95a.

Solving a = 005.
(c) We know that t(0.51) = 1 so

1 = b ln

(
0.51 · 0.95

0.49 · 0.05

)
= b ln

0.4845

0.0245
,

so b = 1
ln 0.4845

0.0245

.

(d) We have

t(0.94) =

∫ 0.94

0.05

b

x(1− x)
dx =

1

ln 0.4845
0.0245

ln

(
0.94(1− 0.05)

0.05(1− 0.94)

)
≈ 1.9086

Problem 9. The German mathematician Karl Weierstrass (1815-1897) noticed that the sub-
stitution t = tan(x/2) will convert any rational function of sin(x) and cos(x) into an ordinary
rational function of t. If t = tan(x/2),−π < x < π, then it can be shown that

cos
(
x
2

)
= 1√

1+t2
, sin

(
x
2

)
= t√

1+t2

cos(x) = 1−t2
1+t2 , sin(x) = 2t

1+t2 ,

and

dx =
2

1 + t2
dt.

Use the substitution given above to transform the following integral into a rational function of
t and then evaluate the integral: ∫ π/2

π/3

10

1 + sin(x)− cos(x)
dx
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Solution. Let tan(x/2) = t, then as the problem described, we know that when x = π/3, t = tan(π/6) =
1/
√

3 and when x = π/2, t = tan(π/4) = 1. Therefore∫ π/2

π/3

10

1 + sinx− cosx
dx =

∫ 1

1/
√
3

10

1 + 2t
1+t2 −

1−t2
1+t2

· 2

1 + t2
dt

=

∫ 1

1/
√
3

10(1 + t2)

1 + t2 + 2t− 1 + t2
· 2

1 + t2
dt

=

∫ 1

1/
√
3

10

t2 + t
dt

=

∫ 1

1/
√
3

10

t(t+ 1)
dt

=

∫ 1

1/
√
3

10

(
1

t
− 1

t+ 1

)
dt

= 10[ln |t| − ln |t+ 1|]1
1/
√
3

= 10

[
ln

∣∣∣∣ t

t+ 1

∣∣∣∣]1
1/
√
3

= 10
(

ln

(
1

2

)
− ln

(
1/
√

3

1
√

3 + 1

))
= 10

(
ln

(
1

2

)
− ln

(
1√

3 + 1

))
= 10 ln

(√
3 + 1

2

)
.

Problem 10. Evaluate
∫ π
π/6
| cos(x)|dx. Solution.

∫ π

π/6

| cosx|dx =

∫ π/2

π/6

cosxdx+

∫ π

π/2

(− cosx)dx

= sinx|π/2π/6 − sinx|ππ/2
= 1− 0.5− (0− 1)

= 1.5

Problem 11. Find the area of the shaded region below. Solution.
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Area =

∫ 1

−1

∫ ey

y2−2
dxdy

=

∫ 1

−1
x|e

y

y2−2 dy

=

∫ 1

−1
ey − y2 + 2 dy

=ey − 1

3
y3 + 2y |1−1

=(e1 − 1

3
· 1 + 2 · 1)− (e−1 − 1

3
· (−1) + 2 · (−1))

=e− 1

e
+

10

3
.

Problem 12. Given

f(x) =

∫ x

0

t2 − 36

1 + cos2(t)
dt.

At what value of x does the local max of f(x) occur?
Solution. First, note that we don’t need to do any computation to compute the first derivative, which we

will use to check for local maxima and minima. By applying the Fundamental Theorem of Calculus, we see
that:

f ′(x) =
x2 − 36

1 + cos2(x)
.

Now, we can use this derivative to find the critical points of the function. We set this to zero and solve for x
to get:

x2 − 36

1 + cos2(x)
= 0

x2 − 36 = 0

(x+ 6)(x− 6) = 0

x = 6 or x = −6

Checking on either side of these two points shows that −6 is the local maximum for which we are looking.
Problem 13. Part 1: A derivative computation using the chain rule Suppose F (x) is any

function that is differentiable for all real numbers x. Evaluate the following derivative.
d
dx

(
F
(
x4
))

=
Enter the derivative of F (x) as F′(x) using prime notation. Your answer should be in terms of
F ′ and other functions of the variable x.
Part 2: A derivative computation using the FTC
Suppose F (x) =

∫ x
11
e−t

2

dt. Use the Fundamental Theorem of Calculus to evaluate the derivative.

F ′(x) =
d

dx

(∫ x

11

e−t
2

dt

)
=

Part 3: A composition of two functions.
Suppose F (x) =

∫ x
11
e−t

2

dt. Find a formula for the function F
(
x4
)

expressed using an integral.

F
(
x4
)

=

Part 4: A derivative computation using the FTC and the chain rule

d

dx

(
F
(
x4
))

=
d

dx

(∫ x4

11

e−t
2

dt

)
=

Solution. Part 1. d
dx

(
F
(
x4
))

= 4x3F ′(x4)
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Part 2. Using the Fundamental Theorem of Calculus which states if

F (x) =

∫ x

a

f(t)dt,

then
F ′(x) = f(x).

Hence

F ′(x) =
d

dx

(∫ x

11

e−t
2

dt

)
= e−x

2

.

Part 3.

F
(
x4
)

=

∫ x4

11

e−t
2

dt.

Part 4.
d

dx
(F (x4)) =

d

dx

(∫ x4

11

e−t
2

dt
)

= 4x3e−x
8

.

Problem 14. Find the following limit using l’Hopital’s Rule:

lim
x→0+

∫ x
0

√
t cos tdt

x2

Solution. l’Hopital’s Rule:

lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)
.

Then we know that
d

dx

∫ b(x)

a(x)

f(t)dt = f(b(x)) · b′(x)− f(a(x)) · a′(x).

Then we get (∫ x

0

√
t cos tdt

)′
= (
√
x cosx) · 1− 0 · 1 · 0 =

√
x cosx,

then

lim
x→0+

∫ x
0

√
t cos tdt

x2
= lim
x→0+

√
x cosx

2x
= lim
x→0+

cosx

2
√
x

=
1

0+
=∞.

Problem 15. Suppose that F (x) =
∫ x
1
f(t)dt, where

f(t) =

∫ t2

1

√
7 + u6

u
du.

Find F ′′(2).
F ′′(2) =

Solution. Using the Fundamental Theorem of Calculus which states if

F (x) =

∫ x

a

f(t)dt,

then
F ′(x) = f(x).

Thus

F ′(x) =
d

dx

∫ x

1

f(t)dt = f(x),

F ′′(x) = f ′(x) =
d

dx

∫ x2

1

√
7 + u6

u
du =

2x
√

7 + x12

x2

9



⇒ F ′′(2) =
2 · 2
√

7 + 212

22
=
√

4103.

Problem 16. Let F (x) =
∫ x
0

3−t
t2+55dt for −∞ < x < +∞.

(a) Find the value of x where F obtains its maximum value.

x =

(b) Find the intervals over which F is only increasing or decreasing. Use interval notation using
U for union and enter ”none” if no interval.
Intervals where F is increasing:
Intervals where F is decreasing:
(c) Find open intervals over which F is only concave up or concave down. Use interval notation
using U for union and enter ”none” if no interval.
Intervals where F is concave up:
Intervals where F is concave down:

Solution.
(a)

F ′(x) =
d

dx

∫ x

0

3− t
t2 + 55

dt =
3− x
x2 + 55

= 0,

when x = 3 which is the only critical point. From sign analysis of F ′ we see this is a maximum.
(b) F is increasing on (−∞, 3] and decreasing on [3,+∞).
(c)

F ′′(x) =
d

dx

[
3− x
x2 + 55

]
=
x2 − 6x− 55

(x2 + 55)
2 =

(x− 11)(x+ 5)

(x2 + 55)
2 = 0,

when x = −5, 11. Sign analysis of F ′′ shows that F is concave up on (−∞,−5) and (11,+∞) and concave
down on (−5, 11).

Problem 17. Evaluate the integral ∫ 2

−1
(4x− 5|x|)dx

Solution. We split the interval [−1, 2] to [−1, 0] and [0, 2]. Then we get∫ 2

−1
(4x− 5|x|)dx =

∫ 0

−1
(4x− 5|x|)dx+

∫ 2

0

(4x− 5|x|)dx

=

∫ 0

−1
(4x+ 5x)dx+

∫ 2

0

(4x− 5x)dx

=

∫ 0

−1
9xdx+

∫ 2

0

(−x)dx

=
9

2
x2|0−1 −

1

2
x2|20

=0− 9

2
· (−1)2 − 1

2
· (2)2

=− 9

2
− 4

2

=− 13

2

Problem 18. Consider the function f(x) = x2

4 + 7. In this problem you will calculate∫ 2

0

(
x2

4 + 7
)
dx by using the definition

∫ b

a

f(x)dx = lim
n→∞

[
n∑
i=1

f (xi) ∆x

]
.
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The summation inside the brackets is Rn, which is the Riemann sum where the sample points
are chosen to be the right-hand endpoints of each sub-interval.

Calculate Rn for f(x) = x2

4 + 7 on the interval [0, 2] and write your answer as a function of n
without any summation signs.

Rn =

lim
n→∞

Rn =

Solution. Note

Rn =

n∑
i=1

f (xi) ∆x

So we calculate ∆x :

∆x =
b− a
n

=
2− 0

n
=

2

n
.

And although the problem does not specify to use right endpoints, if you check the hint you will find out that’s
what they intend, so we let xi = 0 + ∆x · i = 2i

n . And then we plug it in and simplify:

Rn =

n∑
i=1

f (xi) ∆x =

n∑
i=1

(
2

n

)
f

(
2i

n

)

=
2

n
·
( n∑
i=1

[(
2i
n

)2
4

]
+ 7
)

=
2

n
·
n∑
i=1

(
1 · i

2

n2
+ 7

)

=
2

n
·

[(
n∑
i=1

i2

n2

)
+

(
n∑
i=1

7

)]

=
2

n
·

[(
1

n2

n∑
i=1

i2

)
+ 7n

]
Using the standard summation formulation

n∑
r=1

r =
n(n+ 1)

2
,

n∑
r=1

r2 =
n(n+ 1)(2n+ 1)

6
,

then we get
2

n

[
1

n2
n(n+ 1)(2n+ 1)

6
+ 7n

]
=

2

n

[
1

n2
2n3 + 3n2 + n

6
+ 7n

]
= 2

[
1

n3
2n3 + 3n2 + n

6
+ 7

]
= 2

[
2n3 + 3n2 + n+ 42n3

6n3

]
=

44n3 + 3n2 + n

3n3

=
44 + 3

n + 1
n2

3
.

Then we know that

Rn =
44 + 3

n + 1
n2

3
.

Take the limit as n→∞, we get

lim
n→∞

Rn = lim
n→∞

44 + 3
n + 1

n2

3
=

44 + 0 + 0

3
=

44

3
.
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Problem 19. Consider the integral
∫ 6

2
x

1+x5 dx. Which of the following expressions represents
the integral as a limit of Riemann sums?

A. limn→∞
∑n
i=1

4
n

2+ 4i
n

1+(2+ 4i
n )

5

B. limn→∞
∑n
i=1

4
n

2+ 4i
n

1+(2+ 4i
n )

C. limn→∞
∑n
i=1

6
n

2+ 6i
n

1+(2+ 6i
n )

D. limn→∞
∑n
i=1

2+ 4i
n

1+(2+ 4i
n )

5

E. limn→∞
∑n
i=1

2+ 6i
n

1+(2+ 6i
n )

5

F. limn→∞
∑n
i=1

6
n

2+ 6i
n

1+(2+ 6i
n )

5

Solution. Riemann Sum: Given a function f(x) defined on [a, b] and a partition a = x0 < x1 < x2 <
. . . < xn = b Then, a Riemann sum is a sum of the form,

n∑
k=1

f (x∗k) ∆xk

Where x∗k ∈ [xk−1, xk] and ∆xk = xk − xk−1. When x∗k = xk, we call the sum the right Riemann sum.
Let f(x) = x

1+x5 and a = 2, b = 6 We will use the right Riemann Sum with a fixed length sub-interval.

Then ∆x = xk − xk−1 = b−a
n = 4

n and xk = 2 + k ∗∆x = 2n+4k
n . So,

f (xk) =
2n+4k
n

1 +
(
2n+445

n

)5 =
n4(2n+ 4k)

n5 + (2n+ 4k)5
.

So, the right Riemann sum is given by

n∑
k=1

f (xk) ∆xk =

n∑
k=1

n4(2n+ 4k)

n5 + (2n+ 4k)5
4

n
=

n∑
k=1

4n3(2n+ 4k)

n5 + (2n+ 4k)5
.

Therefore,∫ 6

2

x

1 + x5
dx = lim

n→∞

n∑
k=1

f (xk) ∆xk = lim
n→∞

n∑
k=1

4n3(2n+ 4k)

n5 + (2n+ 4k)5
= lim
n→∞

n∑
k=1

4

n

2 + 4k
n

1 +
(
2 + 4k

n

)5 .
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