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1. (2 points) Suppose f : R → R is a continuous function and S = {x ∈ R : f(x) = 0}.
Show that S is closed in the sense that if xn ∈ S and xn → x, then x ∈ S.

Solution: Let {xn}∞n=1 be a sequence such that xn ∈ S for all n ∈ N and xn → x.
Then f(xn) = 0 for all n ∈ N. Since f is continuous, we have that

f(x) = lim
t→x

f(t) = lim
n→∞

f(xn) = 0.

Therefore x ∈ S.
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2. (2 points) Suppose f : R→ R is a continuous functions such that

f(m2−n) = m2−n

for all m ∈ Z, n ∈ N. Show that f(x) = x for all x ∈ R.

Solution: Let x ∈ R. For any n ∈ N, we can find mn ∈ Z such that

x2n ≤ mn < x2n + 1.

Let xn = mn2−n. Then
x ≤ xn < x+ 2−n.

By squeeze theorem, we have that limn→∞ xn = x. Since mn ∈ Z and n ∈ N, we
have that f(xn) = xn. By continuity of f , we can conclude that

f(x) = lim
n→∞

f(xn) = lim
n→∞

xn = x.
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3. (2 points) Let I = [0, π/2] and f : I → R be a function given by f(x) = sup{x2, cosx}
for x ∈ I. Show that there is x0 ∈ I such that f(x0) = min{f(x) : x ∈ I}. Moreover,
x20 = cosx0.

Solution: Since I is a closed interval, by Max-Min Theorem, to prove f attains a
minimum in I, it suffices to show that f is continuous on I.

Let h, g : I → R be two continuous functions.

We prove the claim that f(x) = sup {h(x), g(x)} is continuous at any c ∈ I.

(1) If h(c) = g(c), for any ε > 0, there exist δ1, δ2 > 0 such that |h(x)− h(c)| < ε
for |x− c| < δ1 and |g(x)− h(c)| < ε for |x− c| < δ2. Let δ = min {δ1, δ2}. For
|x− c| < δ, we have that

|f(x)− f(c)| ≤ sup {|h(x)− h(c)| , |g(x)− h(c)|} < ε.

It follows that f is continuous at c.

(2) If h(c) 6= g(c), without loss of generality, we can assume that h(c) = f(c) > g(c).

For ε = h(c)−g(c)
2

, there exist δ1, δ2 > 0 such that |h(x)− h(c)| < ε for |x− c| < δ1
and |g(x)− g(c)| < ε for |x− c| < δ2. Let δ = min {δ1, δ2}. For |x− c| < δ, we
have that

g(x) <
h(c) + g(c)

2
< h(x).

Hence f(x) = h(x) for |x− c| < δ. Therefore, f is continuous at c.

Alternatively, we can also prove the continuity of f by the fact that

f =
1

2
(h+ g + |h− g|).

From the claim above, we can find x0 ∈ I such that f(x0) = min {f(x) : x ∈ I}.
Let F (x) = x2 − cos(x). We have that F is continuous, strictly increasing with
F (0) = −1 < 0 and F (π

2
) = π2

4
> 0. Then there exists b ∈ I such that F (b) = 0.

Suppose x0 6= b. Let x′ = x0+b
2
∈ I.

(1) If x0 > b, then x0 > x′ > b. By monotonicity of F , F (x0) > F (x′) > 0. Then
f(x0) = x20 > x′2 = f(x′), contradicting the minimality of f(x0).

(2) If x0 < b, then x0 < x′ < b. By monotonicity of F , F (x0) < F (x′) < 0. Then
f(x0) = cos(x0) > cos(x′) = f(x′), also a contradiction.

Therefore, F (x0) = 0, which implies that x20 = cos(x0).
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4. (2 points) Show that f(x) = x−1 on (a,+∞) is uniformly continuous if a > 0. Is the
result still true if a = 0? Give your reasoning.

Solution: Let a > 0. For any ε > 0, let δ = a2ε. Then for x1, x2 > a, whenever
|x1 − x2| < δ, we have that

∣∣x−11 − x−12

∣∣ =
|x1 − x2|
|x1x2|

≤ a−2 |x1 − x2| < ε.

Hence x−1 is uniformly continuous on (a,+∞).

For a = 0, let xn = 1
n

and un = 1
n+1

be two seuqences in (0,+∞).

Then limn→∞ |xn − un| = 0 and limn→∞ |x−1n − u−1n | = 1 > 0. Hence x−1 is not
uniformly continuous on (0,+∞).
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5. (2 points) Suppose f : [0, 1]→ R is a function such that for all x, y ∈ R,

|f(x)− f(y)| ≤ Λ|x− y|1/2

for some Λ > 0. Show that f is uniformly continuous. Is the converse also true? Give
your reasoning.

Solution: For any ε > 0, let δ = Λ−2ε2. Then for x1, x2 ∈ [0, 1], whenever
|x1 − x2| < δ, we have that

|f(x1)− f(x2)| ≤ Λ |x1 − x2|
1
2 < ε.

Hence f is uniformly continuous on [0, 1].

Conversely, f(x) = x
1
4 is a continuous function on [0,+∞), thus is uniformly contin-

uous on [0, 1]. However,

|f(x)− f(0)|
|x− 0|

1
2

= x−
1
4 →∞ as x→ 0.

Therefore the converse is not true.


