
Solution to Midterm 2

1. (a) By direct computation, we have the following.

RHS = ‖x+ y‖2 + ‖x− y‖2

= 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉

+ 〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉

= 2 ‖x‖2 + 2 ‖y‖2 = LHS

(b) Using the parallelogram law, we have the following.

2 ‖u‖2 + 2 ‖v‖2 = ‖u+ v‖2 + ‖u− v‖2

2(
√

2)2 + 2 ‖v‖2 = (4)2 + (2)2

‖v‖ = 2
√

2

2. (a) By applying the Gram-Schmidt process, we have the following.

v1 = 1

v2 = x− 〈x, 1〉
〈1, 1〉

· 1 = x− 1

2

v3 = x2 −
〈
x2, 1

〉
〈1, 1〉

· 1−
〈
x2, x− 1

2

〉〈
x− 1

2 , x−
1
2

〉 · (x− 1

2

)
= x2 − 1

3
−

1
12
1
12

(
x− 1

2

)
= x2 − x+

1

6

Then we can normalize them to obtain an orthonormal basis.

w1 =
v1
‖v1‖

= 1

w2 =
v2
‖v2‖

= 2
√

3

(
x− 1

2

)
w3 =

v3
‖v3‖

= 6
√

5

(
x2 − x+

1

6

)
Hence, we have β′ = {1, 2

√
3(x− 1

2 ), 6
√

5(x2 − x+ 1
6 )}.
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(b) Note that β = {1, x, x2} is a basis consisting of eigenvectors of T .

T (1) = 0, T (x) = x, T (x2) = 0

Hence, T is diagonalizable.

(c) From the above, we see that

T (w1) = 0

T (w2) = 2
√

3x =
√

3w1 + w2

T (w3) = −6
√

5x = −
√

15w1 −
√

15w2

Note that β′ is an orthonormal basis for P2(R). However, we have

[T ]β′ =

0
√

3 −
√

15

0 1 −
√

15
0 0 0

 ,

which is not self-adjoint. So, T is not self-adjoint and there does not
exist an orthonormal eigenbasis of P2(R) corresponding to T .

3. (a) For any c ∈ F, we have the following.

Ty,z(x1 + cx2) = 〈x1 + cx2, y〉 z
= 〈x1, y〉 z + c 〈x2, y〉 z
= Ty,z(x1) + cTy,z(x2)

Hence, we see that Ty,z is linear.

(b) For any x ∈ V , we have the following.

Tw,vTy,z(x) = Tw,v(〈x, y〉 z)
= 〈(〈x, y〉 z), w〉 v
= 〈x, y〉 〈z, w〉 v (note that 〈x, y〉 is just a scalar)

= 〈x, y〉 (〈z, w〉 v)

= Ty,〈z,w〉v(x)

Hence, we have Tw,vTy,z = Ty,〈z,w〉v.

(c) Given y, z ∈ V , for any w, x ∈ V , we have the following.〈
w, T ∗y,z(x)

〉
= 〈Ty,z(w), x〉
= 〈〈w, y〉 z, x〉
= 〈w, y〉 〈z, x〉 (again, 〈w, y〉 is just a scalar)

=
〈
w, 〈z, x〉y

〉
= 〈w, 〈x, z〉 y〉
= 〈w, Tz,y(x)〉

Since this is true for any w, x ∈ V , we have T ∗y,z = Tz,y.
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(d) Note that Ty,z is self-adjoint if and only if T ∗y,z = Ty,z. From (c), we
see that this is true if and only if Ty,z = Tz,y, which means

〈x, y〉 z = 〈x, z〉 y

for any x ∈ V .

Suppose y = cz for some c ∈ R, then the above is trivial. Conversely,
if we have 〈x, y〉 z = 〈x, z〉 y for any x ∈ V . If 〈x, z〉 = 0 for all x ∈ V ,
we have z = 0 and the statement is trivial, so we may take y = 0 and

c = 0. If 〈x, z〉 6= 0 for some x ∈ V , then we have y = 〈x,y〉
〈x,z〉z. Then

we can take c = 〈x,y〉
〈x,z〉 and we have y = cz. Moreover, we have

〈x, z〉 cz = 〈x, cz〉 z = 〈x, z〉 cz,

and hence, c = c, which means c is real. Hence, Ty,z is self-adjoint if
and only if y = cz for some c ∈ R.

4. Note that

‖x+ ay‖2 = 〈x+ ay, x+ ay〉

= ‖x‖2 + a 〈x, y〉+ a 〈y, x〉+ |a| ‖y‖2 .

Suppose x and y are orthogonal, we have

‖x+ ay‖2 = ‖x‖2 + |a| ‖y‖2 ≥ ‖x‖2 .

Hence, ‖x‖ ≤ ‖x+ ay‖.
Conversely, if ‖x‖ ≤ ‖x+ ay‖, we have

a 〈x, y〉+ a 〈y, x〉+ |a| ‖y‖2 = ‖x+ ay‖2 − ‖x‖2 ≥ 0

for all a ∈ F. For y = 0, the statement is trivial. So let’s assume y 6= 0.

By taking a = − 〈x,y〉‖y‖2 , we see that

−〈x, y〉
‖y‖2

〈x, y〉 − 〈x, y〉
‖y‖2

〈y, x〉+
| 〈x, y〉 |2

‖y‖4
‖y‖2 ≥ 0

−| 〈x, y〉 |
2

‖y‖2
− | 〈x, y〉 |

2

‖y‖2
+
| 〈x, y〉 |2

‖y‖2
≥ 0

−| 〈x, y〉 |
2

‖y‖2
≥ 0

| 〈x, y〉 | ≤ 0,

which means 〈x, y〉 = 0. Hence, x and y are orthogonal.
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5. (a) Suppose T is anti-self-adjoint. Then we have

T ∗T = −T 2 = TT ∗.

So, we see that T is normal. Moreover, if v is an eigenvector of T
corresponding eigenvalue λ. Then we have

λ 〈v, v〉 = 〈Tv, v〉 = 〈v, T ∗v〉 = 〈v,−Tv〉 = −λ 〈v, v〉 .

So, we see that λ is purely imaginary.

Conversely, if T is normal and all of its eigenvalues are purely imag-
inary. Then there exists an orthonormal basis β for V consisting of
eigenvectors of T . Note that [T ]β is a diagonal matrix with purely
imaginary diagonal entries. So, we have

[T ∗]β = [T ]∗β = −[T ]β = [−T ]β .

Hence, T ∗ = −T and T is anti-self-adjoint.

(b) Consider the characteristic polynomial of T and all its complex roots.
Note that if α is a root, then α is also a root. Since the number of
roots is odd, there is some root satisfying α = α. In other words,
there is at least one real eigenvalue λ and v 6= 0 such that Tv = λv.
Now, T is anti-self-adjoint, we have T ∗ = −T and

λ 〈v, v〉 = 〈Tv, v〉 = 〈v, T ∗v〉 = 〈v,−Tv〉 = −λ 〈v, v〉 ,

which means λ = 0. In other words, there is a nontrivial v satisfying
Tv = 0. Hence, the dimension of the kernel of T is greater than 0.

6. To show that W is not a subspace of L(V ), we find some elements from
W such that their sum is outside W .

As dim(V ) ≥ 2, we can find two orthonormal vectors, say v1 and v2.
Consider the projection P1 of vectors onto span({v1}) and the projection
P2 of vectors onto span({v1 + v2}). Note that P1 and P2 are orthogonal
projections, so they are self-adjoint. In particular, they are normal, so
P1, P2 ∈W . Consider P1 and P2 in W , we show that P1 + iP2 6∈W .

(P1 + iP2)∗(P1 + iP2)− (P1 + iP2)(P1 + iP2)∗

= (P ∗1 − iP ∗2 )(P ∗1 + iP ∗2 )− (P ∗1 + iP ∗2 )(P ∗1 − iP ∗2 )

= (P1 − iP2)(P1 + iP2)− (P1 + iP2)(P1 − iP2)

= 2i(P1P2 − P2P1)

But P1P2 − P2P1 6= 0 as

(P1P2 − P2P1)(v2) = P1P2(v2) = P1(
v1 + v2

2
) =

v1
2
6= 0.

This shows that P1 + iP2 is not normal and P1 + iP2 6∈ W . Hence, W is
not a subspace of L(V ).
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