Solution to Homework 10

Sec. 6.5

. - . 2 3—3i
2. (c) Consider the characteristic polynomial of A = (3 13 5 )

det(A=AXD)=(2-X)B-N—-3-3)3+3i) =\ —-7\-8
By solving det(A — A\I) = 0, we have A\ = —1 or A\ = 8.
For A = —1, we have
N(A+1) =span({(—1+1i,1)t}).
For \ = 8, we have
N(A—8I) = span({(1,1+14)'}).

By normalizing the two directions, we have
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4. Note that [T']g = (2), where 3 is the standard basis for C* (orthonormal).
Then we have [T%]s = (2) and T} = T%. In other words, T} (u) = Zu.
Hence, we see that T, is always normal, self-adjoint when z is real, and
unitary when |z| = 1.

5. (c) Consider the characteristic polynomial of the matrix on the left, one
can easily check that 1 and +:¢ are the eigenvalues. While for the
matrix on the right, the eigenvalues are, obviously, —1, 0 and 2.
Hence, They are not unitarily equivalent.

7. Suppose T is unitary. There exists an orthonormal basis 5 such that T'(3)
is an orthonormal basis for V. In other words, we have
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where |\;| = 1. Then, by defining x; such that u? = \;, we have |u;| = 1.
Let
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and define U such that [U]g = D. Then we see that U? =T and U is a
unitary operator.

Consider V.= R? and U : V — V with U(a,b) = (a + b,0). Let 8 =
{(1,0),(0,1)} be an orthonormal basis for V. Then we see that

1T, 0)[[ = U0, DI = [[(1,0)]| = [1(0, D) = 1.

However, ||U(1,1)]| = 2 # v/2 = ||(1,1)||. Hence, we see that U may not
be unitary.
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But they are not unitarily equivalent as A is symmetric while B is not.

Consider A = (1 _01) and B = (1 0) . So, A and B are similar.

(a) Since U is unitary, we have ||Uw (z)|| = ||U(x)| = ||=||. This means
that Uy is injective. As W is of finite dimension, Uyy is also surjective
by considering the rank and nullity. Hence, U(W) = W.

(b) Note that V =W @ W+ and U(z) € V. For any x € W,
Ulx)=w+y

for some w € W and y € W+. To show that W+ is U-invariant,
we need to show w = 0. From (a), we see that Uy is surjective, so
there is some v € W such that U(v) = w. As U is unitary, we have
[lv|| = [Jw]||. Similarly, we have

2 2 2 2 2
lz]” = 1U@)[I" = llw + ylI” = [wl]” + [yl

where the last equality is by the orthogonality of w and y. Besides,
we get U(x 4+ v) = 2w + y and

2 2 2 2 2 2
[zl + [[oll” = llz +ol” = 12w + y|I” = 4 lw]” + [lylI” .

Then one can easily solve that ||wl||* = 0, which means w = 0.



16. Let {e;}$°, be an orthonormal basis for V. Consider an operator U defined
by
U(el) = €2
U(62i+1) = €2;—1 for ¢ > 1
U(egi) = €2i+4+2 for i Z 1

One can easily check that U is unitary.
o0 oo
U (z)|| = Zai = ||z||, where z = Zaiei
=1 i=1

Then for the subspace W = span({es, e4, €, ... }), we see that W is U-
invariant. However, W+ is not U-invariant as U(e;) = ex € W.

Sec. 6.6

4. Suppose T is the orthogonal projection of V' on W. Then we have
R(T)" = N(T), N(T)" =R(T)

and R(T) = W. If we have R(I —T) = N(T) and N(I —T) = R(T), then
R(I—-T)* =N(I-T) and N(I —T)* = R(I —T), which means I — T
is an orthogonal projection. With 7' = T2, we have the following.

For any (I — T)(x) € R(I —T), we have
T(I-T)(z)=T(x) - T*(x) =T(z) — T(z) =0,
so (I =T)(z) € N(T). If z € N(T), then we have
x=I-T)x)e RI-T).

Hence, R(I —T) = N(T).
For any z € N(I — T), we have (I —T)(x) = 0, which means

x=T(x) € R(T).
If T(z) € R(T), then we have
(I =T)(T(x)) =T(x) = T*(x) = T(x) = T(x) = 0,
soT(z) € N(I -T). Hence, N(I - T) = R(T).
With the above, we have the following.
R(I-T)" =N(T)*=R(T)=N{I-T)
N(I-T)" =R(T)* = N(T)=R(I -T)

In other words, I — T is an orthogonal projection. Moreover, we have
R(I —T)= N(T) = R(T)* = W+, so I — T is the orthogonal projection
of V.on W+.



6.

7.

Let T be a projection of a finite-dimensional inner product space. We need
to show that R(T)t = N(T) and N(T)* = R(T). For any = € R(T)*,
we have

(T(z),T(x)) = (2, T"(T(x))) = (z, T(T"(x))) = 0,

which means T'(z) = 0 and z € N(T). If z € N(T'), then T(x) = 0, which
means x is an eigenvector of T with respect to eigenvalue 0. Since T is
normal, x is an eigenvector of T* with respect to eigenvalue 0, too. Then
for any T(y) € R(T), we have

(z,T(y)) = (T"(z),y) = 0.

Hence, R(T)* = N(T). Since the space is of finite dimension, we have
N(T)* = (R(T))" = R(T).
Thus, T is an orthogonal projection.

(a) Using the fact that T;T; = 6;,T;, we have

9(T) =g (ZE )\iTi>
=Y o (Zk: A{n)

(b) Similarly, by T;T; = 6;;T};, we have
k
Ty=T" = Z/\?Ti.
i=1
For any eigenvector v; with respect to eigenvalue A;, we have

k
0=To(v;) = T™(v;) = (Z )\?TZ) (v;) = Alv;,

i=1
which means \; = 0. Since this is true for all i, we have

k
T = Z)\iTi =T.

i=1



(¢) Suppose U commutes with each T;. Then we have

UT =U (zk: Am)

i=1

k
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= (zk: /\T> U=TU

i=1
Conversely, suppose U commutes with T'. Note that for each T;, there
exists some polynomial g; such that g;(T) = T;. Then we have

UT; =Ug(T) = g;(TU = T;U.

(d) Note that T;Tj = 6;;T; and T = Y1 \;T;. Let

k
U= \T.
=1

Then one can easily check that U? = T. Since T; are self-adjoint,
that is 7; is normal, thus U is normal, too.

(e) Note that V is finite-dimensional. So T is invertible if and only if
N(T) = 0. But this means 0 is not an eigenvalue of T'.

(f) Suppose T is a projection of V on W along W=. Let \ be eigenvalue
and v € V be the corresponding eigenvector. Then there is some
w € W and y € W+ such that v = w + y. So, we have

w=T(w+y)=Aw+vy)
(1—=XNw=\y.

This means that A can only be 1 or 0.

(g) Suppose T' = —T*. Note that if \; is an eigenvalue of T, then \;
will be an eigenvalue of T™*. Let v; be the eigenvector with respect
to eigenvalue A;. It follows that

Aﬂ)i = T"UZ' = 7T*’Ui = 7)\1"01',

which means every ); is an imaginary number. Conversely, if every \;
is an imaginary number, then A\; = —)\;. Note that T; is self-adjoint.
Then we have

k * k k
T = ( m) =Y NI = (-\)T = -T,
=1 =1 =1

*

which means T = —T*.



10. We prove the statement by induction on the dimension of V', n = dim(V).

When n = 1, the statement is trivial. Now suppose the statement holds
for n <k — 1, we consider n = k.

Pick an arbitrary eigenspace W = E of T' with respect to some eigenvalue
A. Obviously, W is T-invariant. Note that W is also U-invariant as U(w)
is an eigenvector of T' with respect to eigenvalue .

TU(w) =UT(w) = AU (w)

If W =V, by Theorem 6.17, as U is self-adjoint, we may find an or-
thonormal basis  for V consisting of eigenvectors of U. But § are also
orthonormal eigenvectors of T', so the result follows.

On the other hand, if W is a proper subspace of V', we may find S in
following way.

Note that Ty and Uy are normal by Exercise 7 and 8 of Section 6.4.
Using the induction hypothesis, we may choose an orthonormal basis 3;
for W consisting of eigenvectors of Ty and Uy, which are eigenvectors of
T and U too.

Similarly, we see that W= is T*-invariant and U*-invariant. But 7' and U
are normal, so W+ is T-invariant and U-invariant. Again, by the induction
hypothesis, we may choose an orthonormal basis 3, for W+ consisting of
eigenvectors of T" and U.

Let B = f1UB2. As V is of finite dimension, we see that [ is a basis for V'
consisting of eigenvectors of T" and U. Hence, the statement is also true
for n = k.



