Solution to Homework 9

Sec. 6.3
12. (a) For any x € R(T*)*, we have (z,T*(y)) = 0 for all y € V. Then we
have

(T'(x),y) = (x, T"(y)) =0

for all y € V. In other words, we have T'(x) = 0 and x € N(T).
Conversely, for any x € N(T'), we have

(z,T(y)) = (T(x),y) = (0,y) = 0
for any y € V. So we have z € R(T*)*.

(b) By Exercise 13 (c) of Section 6.2, one can show that W = (VVL)L
for any finite-dimensional subspace W. Then we have

R(T*) = (R(T™)*)" = N(T)*.
14. First, we show that T is linear. For any x1,22 € V and ¢ € F, we have

T(x1 + cxe) = (x1 + cxo,y) 2
= <$L’1,y>Z+C<$2,y>Z
=T (x1) + T'(x2)

So T is a linear operator on V and T exists. For any v € V', we have

(z, T"(v)) = (T(x),v)

l
w

Since this is true for any x € V, we have T*(v) = (v, 2) y.



Sec. 6.4

2. (c) Let S be the standard basis. Then we have the following.

= (3 3)

It is easy to check that T is normal but not self-adjoint. So we can
obtain an orthonormal basis of eigenvectors of T for V.
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(d) By orthogonalizing the standard basis, we obtain an orthonormal
basis for Py(R).

8= {1,\/5(215— 1),V6(62 — 6t + 1)}

Then we have the following.

0 2v3 0
[Tlg=10 0 6v2
0 0 0
So we see that T is neither normal nor self-adjoint.
4. Suppose T and U are self-adjoint operators. Note that
(T =UT* =UT.
So it is easy to see that T'U is self-adjoint if and only if TU = UT.

7. (a) Note that W is a subspace of V. Suppose T is a self-adjoint linear
operator on V. For any z,y € W, we have the following.

(x, (Tw)"(y)) =

N
*
-

So Ty is self-adjoint.

(b) We want to show that for any y € W+, we have T*(y) € Wt. To
show that, note that W is T-invariant. Consider any = € W, we have
T(xz) € W. Then for any y € W=, we have the following.

(,T"(y)) = (T'(x),y) = 0

In other words, T*(y) € W+ and W+ is T*-invariant.



(¢) We want to show that (Tw)*(y) = (T*)w (y) for any y € W.

(z,(Tw)*(y)) =

Since this is true for any = € W, the result follows.

(d) From the above part, we see that (Tyw)* = (T*)w. As T is normal,
we have TT* = T*T. Then we have the following.

Tw(Tw)* =Tw(T")w
= (TT")w
=(T"Tw
= (T")wTw
= (Tw)"Tw

Hence, we see that Ty is normal.

8. Since T is normal, we see that T is diagonalizable. Suppose W is T-
invariant, then, by Exercise 24 of Section 5.4, Ty is also diagonalizable.
Then consider a basis for W consisting of eigenvectors of T'.

But these eigenvectors of T" are also eigenvectors of T as T is normal. In
other words, we have a basis for W consisting of eigenvectors of T, which
means W is also T™-invariant.

9. By Theorem 6.15 (a), we have |T(z)| = ||T*(z)|| for all x € V, which
means that T'(z) = 0 if and only if T*(x) = 0. Hence, we see that

N(T) = N(T*).

By Exercise 12 of Section 6.2, we have R(T*) = N(T)*. Hence, the result
follows.
R(T*) = N(T)* = N(T*)* = R(T)

10. Suppose T is self-adjoint, so T* =T

) £ ix)

(@) £ (T (), iz) + (iz, T(x)) + ||z

= ||IT(@)[|* £ 7 (T(x),@) +i(T*(x),2) + ||z

= ||IT@)[* F i (T(x), ) + i (T(x),2) + ||
)

2

From the equality, we see that | T'(z) — z|| = 0 if and only if T'(x) = 0 and
x = 0. So T — 4l is injective. T — 4l is also surjective as V is of finite



12.

14.

dimension. Hence, T — I is invertible. Similarly, we also have T + il to
be invertible.

To check that [(T —4il)~?] " = (T +4I)~", we have the following.

(2. [0 =D (T +iD)) =

As z is arbitrary, we see that [(T — iI)™!] *(T+4iI) = I. Hence, the result
follows.

Since the characteristic polynomial of T splits, by Schur’s Theorem, there
exists an orthonormal basis 8 = {v1,vq,...,v,} such that [T]g is upper
triangular.

We want to show that 3 is an orthonormal basis consisting of eigenvectors
of T. Let [T]g = (Ai,j), where (Am-) is upper triangular.

Note that T'(v1) = A1,1v1, so v1 is an eigenvector of T'. Suppose ¢t is the
largest integer such that vy, vs,...,v; are all eigenvectors with respect to
eigenvalues \;.

If t = n, then our claim is done. Suppose not, we see that

t+1
T(viq1) = Z A 10
i=1

Note that v; are eigenvectors of T* with respect to eigenvalues \; and v;
are orthogonal to each other. For i =1,2,... ¢, we have the following.

A1 = (T(ve41),05) = (Vps1, T*(v3)) = (veg1, Avg) =0

So we have vy to be an eigenvector of T' too.

But this is a contradiction, so we must have ¢ = n. In other words, /3
is a basis for V' consisting of eigenvectors of T" By Theorem 6.17, T is
self-adjoint.

Suppose U and T are self-adjoint operators on V such that UT = TU.
We prove the statement by induction on the dimension n of V.

When n = 1, the statement is trivial. Now suppose the statement holds
for n < k — 1, we consider n = k.

Pick an arbitrary eigenspace W = E) of T' with respect to some eigenvalue
A. Obviously, W is T-invariant. Note that W is also U-invariant as U(w)
is an eigenvector of T" with respect to eigenvalue A.

TU(w) =UT(w) = AU (w)



If W =V, by Theorem 6.17, as U is self-adjoint, we may find an or-
thonormal basis 5 for V consisting of eigenvectors of U. But § are also
eigenvectors of T, so the result follows.

On the other hand, if W is a proper subspace of V, we may find £ in
following way.

Note that Ty and Uw are self-adjoint by Exercise 7 (a) of Section 6.4.
Using the induction hypothesis, we may choose an orthonormal basis /31

for W consisting of eigenvectors of Ty and Uy, which are eigenvectors of
T and U too.

Also, by Exercise 7 (b) of Section 6.4, we see that W+ is T*-invariant
and U*-invariant. But T and U are self-adjoint, so W= is T-invariant
and U-invariant. Again, by the induction hypothesis, we may choose an
orthonormal basis By for W=+ consisting of eigenvectors of 7" and U.

Let 8 = 51 UBs. As V is of finite dimension, we see that /3 is a basis for V'
consisting of eigenvectors of T" and U. Hence, the statement is also true
for n = k.



