
Solution to Homework 7

Sec. 6.1

20. Recall from Exercise 19 (a) that

‖x± y‖2 = ‖x‖2 ± 2Re 〈x, y〉+ ‖y‖2 .

(a) Now that F = R, so Re 〈x, y〉 = 〈x, y〉.

RHS =
1

4
‖x+ y‖2 − 1

4
‖x− y‖2

=
1

4

(
‖x‖2 + 2Re 〈x, y〉+ ‖y‖2

)
− 1

4

(
‖x‖2 − 2Re 〈x, y〉+ ‖y‖2

)
=

1

4
(4Re 〈x, y〉)

= 〈x, y〉
= LHS

(b) Consider
∥∥x+ iky

∥∥2 in the right hand side.∥∥x+ iky
∥∥2 = ‖x‖2 + 2Re

〈
x, iky

〉
+
∥∥iky∥∥2

= ‖x‖2 + 2Re
(
ik 〈x, y〉

)
+ ‖y‖2

Note that
∑4
k=1 i

k = 0.

4∑
k=1

ik
∥∥x+ iky

∥∥2 =

4∑
k=1

(
ik ‖x‖2

)
+

4∑
k=1

(
ik2Re

(
ik 〈x, y〉

))
+

4∑
k=1

(
ik ‖y‖2

)
= ‖x‖2

(
4∑
k=1

ik

)
+

4∑
k=1

(
ik2Re

(
ik 〈x, y〉

))
+ ‖y‖2

(
4∑
k=1

ik

)

= 2

4∑
k=1

(
ikRe

(
ik 〈x, y〉

))
By letting 〈x, y〉 = a+ bi, we have the following.

4∑
k=1

(
ikRe

(
ik 〈x, y〉

))
= ((i)(b) + (−1)(−a) + (−i)(−b) + (1)(a))

= 2(a+ bi) = 2 〈x, y〉

1



Hence, the result follows.

23. (a) Note that the standard inner product is defined as 〈x, y〉 =
∑n
i=1 xiyi,

so we may write 〈x, y〉 as the matrix multiplication y∗x. Then we
have

〈x,Ay〉 = (Ay)∗x = y∗A∗x = 〈A∗x, y〉 .

(b) From (a), we see that

〈Bx, y〉 = 〈x,Ay〉 = 〈A∗x, y〉 .

But this is true for all x and y, so we have B = A∗.

(c) It suffices to show that Q∗Q = QQ∗ = I. But

(QQ∗)ij =

n∑
k=1

qikqkj = 〈qi, qj〉 ,

where qi is the ith column of Q and qij is the jth entry of qi. Obvi-
ously, we see that

(QQ∗)ij =

{
1 if i = j
0 if i 6= j

.

So QQ∗ = I. Similarly, we have Q∗Q = I and, hence, Q∗ = Q−1.

(d) Let α be the standard basis for Fn. Then [T ]α = A and [U ]α = A∗.
Suppose β is an orthonormal basis β for V . As in (c), we define
Q to be the matrix whose columns are the vectors in β. Note that
[I]αβ = Q and [I]βα = Q−1 = Q∗. So we have the following.

[T ]∗β =
(
[I]βα[T ]α[I]αβ

)∗
= (Q∗AQ)∗

= Q∗A∗Q

= [I]βα[U ]α[I]αβ = [U ]β

Sec. 6.2

2. To perform the Gram-Schmidt process, we set v1 = w1 and do the follow-
ing orthogonalization.

vk = wk −
k−1∑
j=1

〈wk, vj〉
‖vj‖2

vj for k = 2, . . . , n
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(f) Let w1 =


1
−2
−1
3

, w2 =


3
6
3
−1

 and w3 =


1
4
2
8

. Using Gram-

Schmidt, we have the following.

v1 = w1 =


1
−2
−1
3



v2 = w2 −
〈w2, v1〉
〈v1, v1〉

v1 =


4
4
2
2



v3 = w3 −
〈w3, v1〉
〈v1, v1〉

v1 −
〈w3, v2〉
〈v2, v2〉

v2 =


−4
2
1
3


Next, we normalize the vectors.

u1 =
v1
‖v1‖

=


1√
15

− 2√
15

− 1√
15

3√
15



u2 =
v2
‖v2‖

=


2√
10
2√
10
1√
10
1√
10



u3 =
v3
‖v3‖

=


− 4√

30
2√
30
1√
30
3√
30


Finally, we take the inner product of x with uj to get the Fourier
coefficients.

〈x, u1〉 = − 3√
15

〈x, u2〉 =
4√
10

〈x, u3〉 =
12√
30
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(f) Let w1 = sin(t), w2 = cos(t), w3 = 1 and w4 = t. Using Gram-
Schmidt, we have the following.

v1 = w1 = sin(t)

v2 = w2 −
〈w2, v1〉
〈v1, v1〉

v1 = cos(t)

v3 = w3 −
〈w3, v1〉
〈v1, v1〉

v1 −
〈w3, v2〉
〈v2, v2〉

v2 = 1− 4 sin(t)

π

v4 = w4 −
〈w4, v1〉
〈v1, v1〉

v1 −
〈w4, v2〉
〈v2, v2〉

v2 −
〈w4, v3〉
〈v3, v3〉

v3 = t+
4 cos(t)

π
− π

2

Next, we normalize the vectors.

u1 =
v1
‖v1‖

=

√
2 sin(t)√
π

u2 =
v2
‖v2‖

=

√
2 cos(t)√
π

u3 =
v3
‖v3‖

=
π − 4 sin(t)√
π3 − 8π

u4 =
v4
‖v4‖

=
8 cos(t) + 2πt− π2√

π5

3 − 32π

Finally, we take the inner product of x with uj to get the Fourier
coefficients.

〈x, u1〉 =

√
2(2π + 2)√

π

〈x, u2〉 = −4
√

2√
π

〈x, u3〉 =
π3 + π2 − 8π − 8√

π3 − 8π

〈x, u4〉 =
π4−48

3 − 16√
π5

3 − 32π

4. Let (a, b, c) ∈ S⊥, where a, b and c are in C. Note that (a, b, c) ⊥ S.

〈(a, b, c), (1, 0, i)〉 = a− ci = 0

〈(a, b, c), (1, 2, 1)〉 = a+ 2b+ c = 0

Hence, S⊥ = span({(i,− 1
2 −

i
2 , 1)}).
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6. Let W be a subspace of V . Note that for any vector v ∈ V , we can express
v as a sum of w and u, where w ∈W and u ∈W⊥, that is, 〈w, u〉 = 0. In
particular, we can take v = x and we have

x = w + u

for some w ∈ W and u ∈ W⊥. Since x 6∈ W , we know that u is not zero.
By taking y = u 6= 0, the result follows.

〈x, y〉 = 〈w + u, u〉 = 〈w, u〉+ 〈u, u〉 = 〈u, u〉 6= 0

Note that for any v ∈ V , there exists unique vectors w ∈W and z ∈W⊥
such that

v = w + z.

As W ∩W⊥ = {0}, we see that V is a direct sum of W and W⊥. Since v
is arbitrary, the projection on W along W⊥ can be defined naturally by
T (v) = w. Then it is easy to see that N(T ) = W⊥. Moreover, as w and
z are orthogonal, we have 〈w, z〉 = 〈z, w〉 = 0. Hence, we have

‖v‖2 = ‖w‖2 + ‖z‖2 ≥ ‖w‖2 = ‖T (v)‖2 .

13. (a) Suppose S0 ⊂ S. For any x ∈ S⊥, we have x to be orthogonal to all
elements in S. Since S0 is a subset of S, x will also be orthogonal to
all elements in S0. That means x ∈ S⊥0 and S⊥ ⊂ S⊥0 .

(b) For any x ∈ S, by definition, x is orthogonal to elements in S⊥. But

that just means x is in
(
S⊥
)⊥

. So we have S ⊂
(
S⊥
)⊥

. Note that
every orthogonal complement is a subspace. Also, span(S) is the

smallest subspace containing S and now that
(
S⊥
)⊥

is a subspace

containing S. Hence, we have span(S) ⊂
(
S⊥
)⊥

.

(c) By similar argument, it is easy to see that W ⊂
(
W⊥

)⊥
. For x 6∈W ,

by Exercise 6, there is some y ∈ W⊥ such that 〈x, y〉 6= 0, which

means x 6∈
(
W⊥

)⊥
. Hence, we have W c ⊂

((
S⊥
)⊥)c

, where U c

means the complement of U in V . In other words, we have
(
W⊥

)⊥ ⊂
W . Thus, W =

(
W⊥

)⊥
.

(d) It is easy to see that for any x ∈ V , we have x = w+z, where w ∈W
and z ∈ W⊥ are unique. Moreover, W ∩ W⊥ = {0} as x ∈ W
and x ∈ W⊥ means 〈x, x〉 = 0, that is x = 0. Hence, we see that
V = W ⊕W⊥.

14. We first show that
(W1 +W2)⊥ = W⊥1 ∩W⊥2 .

For any x ∈ (W1 +W2)⊥, we have

〈x,w1 + w2〉 = 0
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for any w1 ∈ W1 and w2 ∈ W2. By taking w1 = 0, we have 〈x,w2〉 = 0
for any w2 ∈W2. So x ∈W⊥1 . Similarly, we have x ∈W⊥2 and, hence,

(W1 +W2)⊥ ⊂W⊥1 ∩W⊥2 .

Conversely, for any x ∈W⊥1 ∩W⊥2 , we have

〈x,w1〉 = 0 = 〈x,w2〉

for any w1 ∈W1 and w2 ∈W2. Then we have x ∈ (W1 +W2)⊥ as

〈x,w1 + w2〉 = 〈x,w1〉+ 〈x,w2〉 = 0 + 0 = 0.

Hence, W⊥1 ∩W⊥2 ⊂ (W1 +W2)⊥. Next, we show the second equality

(W1 ∩W2)⊥ = W⊥1 +W⊥2

using results from Exercise 13 and the first equality. Note that, from

Exercise 13, we have Wj =
(
W⊥j

)⊥
. Hence, we have the following.

(W1 ∩W2)⊥ =
((
W⊥1

)⊥ ∩ (W⊥2 )⊥)⊥ (by Exercise 13)

=
((
W⊥1 +W⊥2

)⊥)⊥
(by the first equality)

= W⊥1 +W⊥2 (by Exercise 13 again)

16. (a) Let W be the subspace spanned by S, where S = {v1, v2, . . . , vn} is
an orthonormal subset of V , so 〈vi, vi〉 = 1. Then for any x ∈ V , we
may write x = w + z, where w ∈ W and z ∈ W⊥. But for w ∈ W ,
we can express w using v1, v2, . . . , vn.

x = z + a1v1 + a2v2 + · · · anvn
Note that, by taking inner product of x with vj , we have aj = 〈v, vj〉
as 〈z, vj〉 = 0. Then ‖x‖2 can be computed in the following way.

‖x‖2 =

〈
z +

n∑
i=1

aivi, z +

n∑
j=1

ajvj

〉

= 〈z, z〉+

n∑
i=1

|ai|2 〈vi, vi〉

= 〈z, z〉+

n∑
i=1

|ai|2

≥
n∑
i=1

| 〈v, vj〉 |2

(b) From the above argument, we see that the equality holds if and only
if 〈z, z〉 = 0 for any x in V . But this is true if and only if z = 0,
which means x = w + z = w ∈W , x ∈ span(S).
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