In Problems 1 through 4, find dw/dt both by using the chain rule and by expressing w explicitly as a function of t before differentiating.

1.
$$w = \exp(-x^2 - y^2)$$
; $x = t$, $y = \sqrt{t}$

2.
$$w = \frac{1}{u^2 + v^2}$$
; $u = \cos 2t$, $v = \sin 2t$

3.
$$w = \sin xyz$$
; $x = t$, $y = t^2$, $z = t$

3.
$$w = \sin xyz$$
; $x = t$, $y = t^2$, $z = t^3$
 $w = \ln(u + v + z)$; $u = \cos^2 t$, $v = \sin^2 t$, $z = t^2$

In Problems 5 through 8, find $\partial w/\partial s$ and $\partial w/\partial t$.

5.
$$w = \ln(x^2 + y^2 + z^2)$$
; $x = s - t$, $y = s + t$, $z = 2\sqrt{st}$

6.
$$w = pq \sin r$$
; $p = 2s + t$, $q = s - t$, $r = st$

7.
$$w = \sqrt{u^2 + v^2 + z^2}$$
; $u = 3e^t \sin s$, $v = 3e^t \cos s$, $z = 4e^t$

8
$$w = yz + zx + xy$$
; $x = s^2 - t^2$, $y = s^2 + t^2$, $z = s^2t^2$

In Problems 9 through 12, find $\partial r/\partial x$, $\partial r/\partial y$, and $\partial r/\partial z$.

9.
$$r = e^{u+v+w}$$
; $u = yz$, $v = xz$, $w = xy$

10.
$$r = uvw - u^2 - v^2 - w^2$$
; $u = y + z$, $v = x + z$, $w = x + y$

11.
$$r = \sin(p/q);$$
 $p = \sqrt{xy^2z^3},$ $q = \sqrt{x+2y+3z}$
12. $r = \frac{p}{q} + \frac{q}{s} + \frac{s}{p};$ $p = e^{yz},$ $q = e^{xz},$ $s = e^{xy}$

In Problems 13 through 18, write chain rule formulas giving the partial derivative of the dependent variable p with respect to each independent variable.

13.
$$p = f(x, y); \quad x = x(u, v, w), \quad y = y(u, v, w)$$

14.
$$p = f(x, y, z)$$
; $x = x(u, v)$, $y = y(u, v)$, $z = z(u, v)$

15.
$$p = f(u, v, w); u = u(x, y, z), v = v(x, y, z), w = w(x, y, z)$$

$$p = f(v, w); \quad v = v(x, y, z, t), \quad w = w(x, y, z, t)$$

17.
$$p = f(w); \quad w = w(x, y, z, u, v)$$

18.
$$p = f(x, y, u, v); x = x(s, t), y = y(s, t), u = u(s, t), v = v(s, t)$$

In Problems 19 through 24, find $\partial z/\partial x$ and $\partial z/\partial y$ as functions of x, y, and z, assuming that z = f(x, y) satisfies the given equation.

19.
$$x^{2/3} + y^{2/3} + z^{2/3} = 1$$

20.
$$x^3 + y^3 + z^3 = xyz$$

21.
$$xe^{xy} + ye^{zx} + ze^{xy} = 3$$

22.
$$x^5 + xy^2 + yz = 5$$

$$23 \int_{a}^{x^2} \frac{x^2}{b^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

$$24 \quad xyz = \sin(x + y + z)$$

In Problems 25 through 28, use the method of Example 6 to find $\partial \psi/\partial x$ and $\partial w/\partial y$ as functions of x and y.

25.
$$w = u^2 + v^2 + x^2 + y^2$$
; $u = x - y$, $v = x + y$

26.
$$w = \sqrt{uvxy}$$
; $u = \sqrt{x - y}$, $v = \sqrt{x + y}$

27
$$w = xy \ln(u + v);$$
 $u = (x^2 + y^2)^{1/3}, v = (x^3 + y^3)^{1/2}$

28.
$$w = uv - xy$$
; $u = \frac{x}{x^2 + y^2}$, $v = \frac{y}{x^2 + y^2}$

In Problems 29 through 32, write an equation for the plane tan gent at the point P to the surface with the given equation.

29.
$$x^2 + y^2 + z^2 = 9$$
; $P(1, 2, 2)$

30.
$$x^2 + 2y^2 + 2z^2 = 14$$
; $P(2, 1, -2)$

31.
$$x^3 + y^3 + z^3 = 5xyz$$
; $P(2, 1, 1)$

$$32 / z^3 + (x+y)z^2 + x^2 + y^2 = 13; \quad P(2,2,1)$$

- 33. The sun is melting a rectangular block of ice. When the block's height is 1 ft and the edge of its square base is 2 ft its height is decreasing at 2 in./h and its base edge is decreas. ing at 3 in./h. What is the block's rate of change of volume V at that instant?
- 34. A rectangular box has a square base. Find the rate at which its volume and surface area are changing if its base edge is increasing at 2 cm/min and its height is decreasing at 3 cm/min at the instant when each dimension is 1 meter.
- 35. Falling sand forms a conical sandpile. When the sandpile has a height of 5 ft and its base radius is 2 ft, its height is increasing at 0.4 ft/min and its base radius is increasing at 0.7 ft/min. At what rate is the volume of the sandpile increasing at that moment?
- 36. A rectangular block has dimensions x = 3 m, y = 2 mand z = 1 m. If x and y are increasing at 1 cm/min and 2 cm/min, respectively, while z is decreasing at 2 cm/min. are the block's volume and total surface area increasing or decreasing? At what rates?
- 37. The volume V (in cubic centimeters) and pressure p (in atmospheres) of n moles of an ideal gas satisfy the equation pV = nRT, where T is its temperature (in degrees Kelvin) and R = 82.06. Suppose that a sample of the gas has a volume of 10 L when the pressure is 2 atm and the temperature is 300°K. If the pressure is increasing at 1 atm/min and the temperature is increasing at 10°K/min, is the volume of the gas sample increasing or decreasing? At what rate?
- 38. The aggregate resistance R of three variable resistances R_1 , R_2 , and R_3 connected in parallel satisfies the harmonic equation

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}.$$

Suppose that R_1 and R_2 are 100 Ω and are increasing at 1 Ω/s , while R_3 is 200 Ω and is decreasing at 2 Ω/s . Is Rincreasing or decreasing at that instant? At what rate?

39. Suppose that x = h(y, z) satisfies the equation F(x, y, z) =0 and that $F_x \neq 0$. Show that

$$\frac{\partial x}{\partial y} = -\frac{\partial F/\partial y}{\partial F/\partial x}.$$

40. Suppose that $w = f(x, y), x = r \cos \theta$, and $y = r \sin \theta$. Show that

$$\left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 = \left(\frac{\partial w}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial w}{\partial \theta}\right)^2.$$

41. Suppose that w = f(u) and that u = x + y. Show that $\partial w/\partial x = \partial w/\partial y$.

42. Suppose that w = f(u) and that u = x - y. Show that $\frac{\partial w}{\partial x} = -\frac{\partial w}{\partial y}$ and that

$$\frac{\partial^2 w}{\partial x^2} = \frac{\partial^2 w}{\partial y^2} = -\frac{\partial^2 w}{\partial x \partial y}.$$

43. Suppose that w = f(x, y) where x = u + v and y = u - v. Show that

$$\frac{\partial^2 w}{\partial x^2} - \frac{\partial^2 w}{\partial y^2} = \frac{\partial^2 w}{\partial u \, \partial v}.$$

44. Assume that w = f(x, y) where x = 2u + v and y = u - v. Show that

$$5\frac{\partial^2 w}{\partial x^2} + 2\frac{\partial^2 w}{\partial x \partial y} + 2\frac{\partial^2 w}{\partial y^2} = \frac{\partial^2 w}{\partial u^2} + \frac{\partial^2 w}{\partial v^2}.$$

Suppose that w = f(x, y), $x = r \cos \theta$, and $y = r \sin \theta$. Show that

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = \frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2}.$$

[Suggestion: First find $\frac{\partial^2 w}{\partial \theta^2}$ by the method of Example 7. Then combine the result with Eqs. (7) and (8).]

Suppose that

$$w = \frac{1}{r} f\left(t - \frac{r}{a}\right)$$

and that $r = \sqrt{x^2 + y^2 + z^2}$. Show that

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} = \frac{1}{a^2} \frac{\partial^2 w}{\partial t^2}.$$

47. Suppose that w = f(r) and that $r = \sqrt{x^2 + y^2 + z^2}$. Show that

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} = \frac{d^2 w}{dr^2} + \frac{2}{r} \frac{dw}{dr}.$$

48. Suppose that w = f(u) + g(v), that u = x - at, and that v = x + at. Show that

$$\frac{\partial^2 w}{\partial t^2} = a^2 \, \frac{\partial^2 w}{\partial x^2}.$$

49. Assume that w = f(u, v) where u = x + y and v = x - y. Show that

$$\frac{\partial w}{\partial x_1} \frac{\partial w}{\partial y} = \left(\frac{\partial w}{\partial u}\right)^2 - \left(\frac{\partial w}{\partial v}\right)^2.$$

50. Given: w = f(x, y), $x = e^u \cos v$, and $y = e^u \sin v$. Show that

$$\left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 = e^{-2u} \left[\left(\frac{\partial w}{\partial u}\right)^2 + \left(\frac{\partial w}{\partial v}\right)^2 \right].$$

Assume that w = f(x, y) and that there is a constant α such that

 $x = u \cos \alpha - v \sin \alpha$ and $y = u \sin \alpha + v \cos \alpha$.

Show that

W. .

$$\left(\frac{\partial w}{\partial u}\right)^2 + \left(\frac{\partial w}{\partial v}\right)^2 = \left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2.$$

52. Suppose that w = f(u), where

$$u = \frac{x^2 - y^2}{x^2 + y^2}.$$

Show that $xw_x + yw_y = 0$.

Suppose that the equation F(x, y, z) = 0 defines implicitly the three functions z = f(x, y), y = g(x, z), and x = h(y, z). To keep track of the various partial derivatives, we use the notation

$$\left(\frac{\partial z}{\partial x}\right)_{y} = \frac{\partial f}{\partial x}, \qquad \left(\frac{\partial z}{\partial y}\right)_{x} = \frac{\partial f}{\partial y},$$
 (20a)

$$\left(\frac{\partial y}{\partial x}\right)_{x} = \frac{\partial g}{\partial x}, \qquad \left(\frac{\partial y}{\partial z}\right)_{x} = \frac{\partial g}{\partial z},$$
 (20b)

$$\left(\frac{\partial x}{\partial y}\right)_{x} = \frac{\partial h}{\partial y}, \qquad \left(\frac{\partial x}{\partial z}\right)_{y} = \frac{\partial h}{\partial z},$$
 (20c)

In short, the general symbol $(\partial w/\partial u)_v$ denotes the derivative of w with respect to u, where w is regarded as a function of the independent variables u and v.

53 Using the notation in the equations in (20), show that

$$\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y} = -1.$$

[Suggestion: Find the three partial derivatives on the right-hand side in terms of F_x , F_y , and F_z .]

54/Verify the result of Problem 53 for the equation

$$F(x, y, z) = x^2 + y^2 + z^2 - 1 = 0.$$

55. Verify the result of Problem 53 (with p, V, and T in place of x, y, and z) for the equation

$$F(p, V, T) = pV - nRT = 0$$

(n and R are constants), which expresses the ideal gas law.

56. Consider a given quantity of liquid whose pressure p, volume V, and temperature T satisfy a given "state equation" of the form F(p, V, T) = 0. The **thermal expansivity** α and **isothermal compressivity** β of the liquid are defined by

$$\alpha = \frac{1}{V} \frac{\partial V}{\partial T}$$
 and $\beta = -\frac{1}{V} \frac{\partial V}{\partial p}$.

Apply Theorem 3 first to calculate $\partial V/\partial p$ and $\partial V/\partial T$, and then to calculate $\partial p/\partial V$ and $\partial p/\partial T$. Deduce from the results that $\partial p/\partial T = \alpha/\beta$.

- 57. The thermal expansivity and isothermal compressivity of liquid mercury are $\alpha = 1.8 \times 10^{-4}$ and $\beta = 3.9 \times 10^{-6}$, respectively, in L-atm-°C units. Suppose that a thermometer bulb is exactly filled with mercury at 50°C. If the bulb can withstand an internal pressure of no more than 200 atm, can it be heated to 55°C without breaking? Suggestion: Apply the result of Problem 56 to calculate the increase in pressure with each increase of one degree in temperature.
- 58. Suppose that the transformation $T: R_{uvw}^3 \to R_{xyz}^3$ is defined by the functions x = x(u, v, w), y = y(u, v, w), z = z(u, v, w). Then its derivative matrix is defined by

$$T'(u,v,w) = \begin{bmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{bmatrix}.$$

Calculate the derivative matrix of the linear transformation defined by $x = a_1u + b_1v + c_1w$, $y = a_2u + b_2v + c_2w$, $z = a_3u + b_3v + c_3w$.