In Problems ] through 20, compute the first-order partial deriva-

tives of each function.
L flxr,y) =x*—x3y 4+ x2)? — xy3 4 44
2. f(x,y)=xsiny
3. f(x,y) = e*(cosy — sin y)
4. f(x,y) = e%e™

Vf(x’y)= x+y

e
7. f(x,y) =In(x2+ y?)
9. f(x,y)=x"
1L f(x. ¥y 2)y=x*7*
12. f(x,y,2) =x*+y*+ 2
13. f(x,y,2) =e&"*
14. f(x,y,z) =x*—16yz
i f(x,y,2) =x%"1nz
fu, v) = 2u? + 3v?) exp(—u? — v?)

r2_s2
17. f(r,s) = r2+S2

f(u, v) = e*’(cosuv + sinuv)

19-/f(u, v, w) = ue’ + ve® + we"

20. f(r,s,t)=( - r2 — g2 — t2)e—-rst

\Q/f(x, y) =

8. flx,y) =
10. f(x,y) =tan"'xy

xy
x2 4+ y?
(x —y)*

In Problems 21 through 30, verify that Zry = Zy.
21. z = x? — 4xy + 3y?

22, 7z =2x>+ 5x2%y — 6y + xy*

23. z = x?exp(—y?) 24. 7 = xye™

25. z=In(x + y) 26. z = (x> + y}1o
Q]./z =e > cosy 28. z = (x + y)secxy
29. z = x2cosh(1/y?) lﬁ/zz = sinxy + tan~'xy

In Problems 31 through 40, find an equation of the plane tangen
to the given surface z = f(x, y) at the indicated point P.

3. z=x*+y% P =(3,4,25)
32. 2=50-x2~y%; P =(4,-3,5)
33, z=sin?; P=@3,5—1)
4 i
:./z=;tan‘ xy;, P=(1,1,1
cz=xP—yh P=(3,219)
36. z =3x + 4y; P=(1,1,7)

37.,z2=xy; P= (I, -1, -1
WZ =exp(—x?—y?); P =(0,0,1)

39. 2 =x%-4y2 P=(5,209
4\(}./z=\/x2+ % P =(3,-4,5)



Recall that fry = fox J or a'f unction f(x,y) with continuous
second-order. pa.rnal derwanyes. In Problems 4] through 44
apply this cr;ztenon t{) determine whether there exists q ﬁmctior;
£, y) having the given first-order partial derivatives. If so, try

1o determine a formula for such a function fx, ). 53.

4l £ ) =20y filx,y) = 3x2y2
2. folx,y) =5xy +y?%,
43. fu(x.y) = cos’(xy),

44. fi(x,y) =cosxsiny,

52,

Sy(x,y) =322 4 2xy
f)‘(xs y) = Sinz(x_y)

54,

fy(x,¥) = sinx cos y
Figures 12.4.12 through 12.4.17 show the
function f(x,y) and its first- and second-
tives. In Problems 45 through 50, match th
derivative with its graph.

graphs of a certain
order partial deriva-
at function or partial

57.

58.

FIGURE 12.4.17

FIGURE 12.4.16

45. f(x,y) 46. f.(x,y)
47. fy(x,y) 48. fxx(xv )’)
9. f.(x,y) 50. fyy(x.y)

SL. Verify that the mixed second-order partial derivati\(;es ;{;é
and f,, are equal if f(x,y) = x"™)" where m and n
Positive integers.

59.

Suppose that z = e¢*+Y, Show that e** is the result of differ-

entiating z first m times with respect to x, then n times with
respect to y.

Let f(x,y,z) = €% Calculate the distinct second-order
partial derivatives of f and the third-order partial derivative

iy
Suppose that g(x, y) = sinxy. Verify that g, = g,, and

th L 8xxy = &xyx = Zyxx-
tis shown in physics that the temperature u(x, ¢) at time ¢ at

the point x of a long, insulated rod that lies along the x-axis
satisfies the one-dimensional heat equation

%u
ax?

Show that the function

du

o GO p
at

(k is a constant).

u=ulx,t)= exp(—nzkt) sinnx

satisfies the one-dimensional heat equation for any choice of
constant n.

e
%e two-dimensional heat equation for an insulated thin

plate is

du %u 3%u

=kl ===

ot 9x2  dy
Show that the function

u=u(x,y,t) = exp(—[m? + n?lkt) sin mx cos ny

satisfies this equation for any choice of the constants m
and n.

A string is stretched along the x-axis, fixed at each end, and
then set into vibration. It is shown in physics that the dis-
placement y = y(x, t) of the point of the string at location x
at time ¢ satisfies the one-dimensional wave equation

8%y

5 =a

a2

2 %y
ox2’

where the constant a depends on the density and tension
of the string. Show that the following functions satisfy the
one-dimensional wave equation: (a) y = sin(x + at); (b)
y = cosh(3[x — ar]); (¢) y = sinkx coskat (k is a con-
stant).

A steady-state temperature function u
flat plate satisfies Laplace’s equation

u(x, y) for a thin

9%u
dx?

32
i,
dy?

Determine which of the following functions satisfy
Laplace’s equation:

(@) u=1In (m)

() u=xT+y%

(¢) u = arctan(y/x);

(d) u=e"siny.

Suppose that f and g are twice-differentiable functions of a

single variable. Show that y(x,?) = f(x +at) + g(x — at)
satisfies the one-dimensional wave equation of Problem 57.



60. The electric potential field of a point charge ¢ is defined

61.

62.

63.

64.

65.

66.

67.

(in_appropriate units) by é(x,y,2) = q/r where r =

VX2 4 ¥ + z2. Show that ¢ satisfies the three-dimensional
Laplace equation

3¢ ¢ 3%

a2 T P =0

Let u(x, 1) denote the underground temperature at depth x
and time ¢ at a location where the seasonal variation of sur-
face (x = 0) temperature is described by

u(0,1) = Ty + ag cos wt,

where Tj is the annual average surface temperature and the
constant w is so chosen that the period of u(0, 1) is one year.
Show that the function

ulx, 1) = To + agexp( — xyw/2k ) cos(wt — xyw/2k)

satisfies both the “surface condition” and the one-
dimensional heat equation of Problem 55.

The aggregate electrical resistance R of three resistances R I
R, and R; connected in parallel satisfies the equation

1 1 1 1

R R, R2+R3'
Show that

aR & oR + dR
dR, 3R, 0R;

(1+1+1)_(1+1+1)2
“\R? "R? R TR, Ry Ry
The ideal gas law pV = nRT (n is the number of moles of
the gas, R is a constant) determines each of the three vari-

ables p (pressure), V (volume), and T (temperature) as func-
tions of the other two. Show that

cone z2 = x? + y? passes through the origin. Show this by
methods of calculus.

There is only one point at which the plane tangent to the
surface

z_—_-x2+2xy+2y2—6x+8y

is horizontal. Find it.

Show that the plane tangent to the paraboloid with equation
z = x>+ y? at the point (a, b, c) intersects the xy-plane in the
line with equation 2ax +2by = a+b*. Then show that this
line is tangent to the circle with equation 4x24+4y? = a®4b2.
According to van der Waals’ equation, 1 mol of a gas satis-
fies the equation

(p + V"-Z-)(v — b) = (82.06)T

where p, V,and T are as in Example 4. For carbon dioxide,
a = 3.59 x 10° and b = 42.7, and V is 25,600 cm® when p
is 1 atm and T = 313 K. (a) Compute 3V /dp by differen-
tiating van der Waals’ equation with T held constant. Then

estimate the change in volume that would result from 4y, in.
crease of 0.1 atm of pressure with 7" held at 313 K. (b) Com.
pute 3V /3T by differentiating van der Waals’_ equation wig,
p held constant. Then estimate the c'hange In volume thy
would result from an increase of 1 K in temperature with .
Id at | atm.

A minimal surface has the least surface area of all surfaces
with the same boundary. Figure 12.4.18 shows Scherk’s miy.
imal surface. It has the equation

z = In(cos x) — In(cos y).

A minimal surface z = f(x, y) is known to satisfy the par.
tial differential equation

(l + Zf,)z,u — Z%xTylxy %3 (l + zf)z.")' =0

Verify this in the case of Scherk’s minimal surface.

FIGURE 12.4.18 Scherk’s minimal
surface (Problem 68).

69. We say that the function z = f(x, y) is harmonic if it sat-

isfies Laplace’s equation z,, + Zyy = 0. (See Problem 58.)
Show that each of these four functions is harmonic:

(@ fi(x,y) =sinx sinh(r — y);

(b) fa(x,y) =sinh2x sin2y;

(©) fi(x,y) =sin3x sinh3y;

(d) fax,y) = sinh4(r — x) sin4y.

70. Figure 12.4.19 shows the graph of the sum

4
2(x,y) = Z fitx,y)
i=1

of the four functions defined in Problem 69. Explain why
2(x, y) is a harmonic function.

FIGURE 12.4.19 The surface
2= f(x,y) of Problem 70.



71. You are standing at the point where x = y = 100 (ft) on a

72,

73

hillside whose height (in feet above sea level) is given by

with the positive x-axis to the east and the positive y-axis to
the north. (a) If you head due east, will you initially be as-
cending or descending? At what angle (in degrees) from the
horizontal? (b) If you head due north, will you initially be

ascending or descending? At what angle (in degrees) from
the horizontal?

Answer questions (a) and (b) in Problem 71, except that now
you are standing at the point where x = 150 and y = 250
(ft) on a hillside whose height (in feet above sea level) is
given by

1
z = 1000 + ——(3x% = 5xy + y?).

1000
igure 12.3.7 shows the graph of the function f defined by
ny ; unless x =y =0,
flx,y)=4¢x*+Yy
0 ifx=y=0.

(a) Show that the first-order partial derivatives f, and f, are
defined everywhere and are continuous except possibly at
the origin. (b) Consider behavior on straight' l.ines to show
that neither f, nor f, is continuous at the origin. (c) Show
that the second-order partial derivatives of f are all defined
and continuous except possibly at the origin. (d) S.how that
the second-order partial derivatives fi ?nd fyy exist at the
origin, but that the mixed partial derivatives fxy and f,, do
not.

Mgure 12.4.20 shows the graph of the function g defined by

xy(x? — y?)
x2 4+ y?
0 ifx=y=0.

unlessx =y =0,

gx,y) =

(a) Show that the first-order partial derivatives g, and g,
are defined everywhere and are continuous except possi-
bly at the origin. (b) Use polar coordinates to show that
g: and g, are continuous at (0, 0) as well. (c) Show that
the second-order partial derivatives of g are all defined and
continuous except possibly at the origin. (d) Show that all
four second-order partial derivatives of g exist at the ori-
gin, but that g,,(0,0) # g,:(0,0). (e) Consider behavior
on straight lines to show that none of the four second-order
partial derivatives of g is continuous at the origin.

FIGURE 12.4.20 The graph
B x3y - xy3
T ox24y2

4 of Problem 74.



