
MATH 5061 Riemannian Geometry

Solution to Problem Set 6

Problem 1
We will show R2

+ is geodesically complete w.r.t g = 1
y2 (dx

2+ dy2). That is, any
geodesic γ0(t) : (−ε, ε)→ R2

+ can be extended infinity at both side.
First, we note γ(t) = (0, t) is a geodesic. Indeed, for any new curve c(t) :

[0, 1]→ R2
+ jointing (0, a), (0, b) with , we have

Length(c) =
ˆ 1

0

|c′(t)| dt =
ˆ 1

0

√(
dx

dt

)2

+

(
dy

dt

)2
dt

y

≥
ˆ 1

0

∣∣∣∣dydt
∣∣∣∣ dty ≥

ˆ 1

0

dy

dt

dt

y
=

ˆ b

a

dy

y
= Length(γ|[a,b])

So by the minimizing properties of geodesics, we know γ(t) is indeed a
geodesic.

Moreover, γ can be extended to infinity at both side by noting
ˆ ∞
1

|γ′(t)| dt =
ˆ ∞
1

dt

t
= +∞

ˆ 1

0

|γ′(t)| dt =
ˆ 1

0

dt

t
= +∞

Now, we can try to convert any other geodesics to this standard y-axis.
Note the linear fractional transformation z → az+b

cz+d with a, b, c, d ∈ R, ad −
bc > 0 is a isometry of R2

+. Indeed, suppose g = 1
|Imz|2 dzdz and w = az+b

cz+d , then

1

|Imw|2
dwdw =

|cz + d|4

|ad− bc|2 |Imz|2

∣∣∣∣ (ad− bc)dz(cz + d)2

∣∣∣∣2 =
1

|Imz|2
|dz|2 .

Hence, for any geodesic γ0 above, we can use the isometric transformation
ϕ(z) = z−Reγ0(0)

Imγ0(0)
to get γ̃0 := ϕ ◦ γ0 is a geodesic such that ϕ ◦ γ0(0) = (0, 1).

Without loss of generality, we assume γ0 is parametric by arc length.
Now let’s consider the isometric transformation ψ(z) = z−a

1+az for a ∈ R
decided later on. Clearly ψ(i) = i, hence ψ ◦ γ̃0(0) = (0, 1). Now let’s calculate
the differential of ψ at z0 := i = (0, 1) and we can get

dψz0(w) =
w(1 + az0)− (z0 − a)aw

(1 + az0)2
=

1− ai
1 + ai

w.
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So dψz0 acts on Tz0Rn+ like the rotation. If γ̃′0(0) 6= (0, 1), we can always
find a ∈ R such that 1−ai

1+ai = (γ̃′0(0))
−1 as a complex number by solving a simple

equation. Hence the geodesic γ defined by ψ ◦ γ̃0 will pass through (0, 1) and
γ′(0) = (0, 1). By the uniqueness of geodesic we know γ will coincide with γ
after reparameterization. Hence γ and γ0 can be extended to infinity at both
side.

So by Hopf-Rinow theorem, we know R2
+ is complete.

Problem 2
Let γ : [0, l]→ (Mn, g) be the minimizing geodesic jointing p, q ∈M parametrized

by arc length where l = dist(p, q). We will prove l ≤ l0 := max

{
8cπ
a ,
√

2(n−1)π2

a

}
by contradiction.

Suppose l > l0, we will fix a parallel orthonormal basis {e1(t), · · · , en−1(t), γ′(t)}
along γ.

We define Vi(t) := (sin(πtl ))ei(t), so Vi(0) = Vi(l) = 0. We can calculate the
second variation of energy to get

E′′i (0) = −
ˆ l

0

〈V ′′i +R(γ′, Vi)γ
′, Vi〉 dt =

ˆ l

0

sin2(
πt

l
)

(
π2

l2
− 〈R(γ′, ei)γ′, ei〉

)
dt

After taking sum over i = 1, · · · , n− 1, we have

n−1∑
i=1

E′′i (0) =

ˆ l

0

sin2
(
πt

l

)(
(n− 1)

π2

l2
− Ric(γ′, γ′)

)
dt

≤
ˆ l

0

sin2
(
πt

l

)(
(n− 1)

π2

l2
− a− f ′(t)

)
dt

<

ˆ l

0

− sin2
(
πt

l

)
a

2
dt+

ˆ l

0

2 sin

(
πt

l

)
cos

(
πt

l

)
π

l
f(t)dt

≤ − al

4
+ 2πc < 0

This E′′i (0) < 0 for some i, which contradicts γ being minimizing.
Hence by Hopf-Rinow theorem, we know M is compact since it has finite

diameter.

Problem 3
If K ≤ 0, then expp : TpM → M is a covering map by Cartan-Hadamard
Theorem. Let exp∗p(g) be the metric on TpM to make expp be a local isometry.

For any path c jointing p, q, we can get a lifting path c̃ inside TpM jointing
0 and some q̃ ∈ exp−1p (q). Note that there exists a unique geodesic in TpM
jointing 0, q̃ giving by γ̃(t) = tq̃ since all the geodesics starting form 0 is the
radical rays.

So expp(γ̃) will give a geodesic jointing p, q which is homotopic to c. Note
for any curves homotopic to c and jointing p, q can be lifted to a curve jointing
0, q̃, we know if there is another geodesic jointing p, q will give another lifting
geodesic jointing 0, q̃, hence it should coincide with γ̃. Hence the uniqueness of
geodesic jointing p, q has be proved.
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Problem 4
Let M be the even dimensional complete manifold with constant positive sec-
tional curvature. We know M is compact by Bonnet-Myers theorem.

By Synge Theorem, we know if M is orientable, then M is simply con-
nected. So by classification of spaces of constant sectional curvature, we know
M isometry to the standard sphere S2n.

If M is non-orientable, we consider M̃ , the orientation covering space of M .
Now by above theorem, we know M̃ isometric to S2n. So M will be a quotient
space of S2n under a isometric action ϕ : S2n → S2n that ϕ ◦ ϕ = IdS2n and ϕ
reverses the orientation on S2n. We want to show ϕ is an antipodal map.

Indeed, we know ϕ ∈ O(2n+1) by standard argument. (see Ex. 2 in Problem
Set 3) Let A be the matrix form of ϕ. Note A2 = I2n+1, we know the eigenvalues
of A can only be 1 or −1. Since the action ϕ is free (has no fix point), A cannot
take 1 to be a eigenvalue. So A = −I2n+1 and hence ϕ(x) = −x, which is an
antipodal map.

Hence M will isometric to the standard RP2n with the canonical round
metric.

Problem 5
(a). We can extend h to the action on C2 just by

h(z1, z2) =
(
e

2π
q iz1, e

2πr
q iz2

)
.

The standard metric on C2 is given by g = |dz1|2+|dz2|2. Hence the pullback
metric under h is given by

h∗g =
∣∣∣e 2π

q idz1

∣∣∣2 + ∣∣∣e 2πr
q idz2

∣∣∣2 = |dz1|2 + |dz2|2 .

Hence h and so hk are isometries of C2. After restriction to S3, we know
G = {id, h, · · · , hq−1} is a group of isometries of S3.

Note that hk acts on S3 is free for k = 1, · · · , q − 1 since q, r are relatively
prime. So the quotient space S3/G is a smooth manifold. (G is a discrete group
acting smoothly, freely, and properly on S3. Properly is easy to see since S3 is
compact.)
(b). For any y ∈ S3/G, we can find a small neighborhood y ∈ Vy ⊂ S3/G and
x ∈ Ux ⊂ S3 such that x ∈ π−1(y) and π is a diffeomorphism between Ux, Vy
by the properties of covering map. Now we can define the Riemannian metric
in Vy by

(
π−1

)∗
gS3 where gS3 is the standard metric on S3.

Now we need to check this is well-defined metric on Vy. For another point
x̃ ∈ S3 with π(x̃) = y, we know there is k ∈ Z such that hk(x) = x̃. So hk(Ux)
is a neighborhood of x̃ such that π is a diffeomorphism between hk(Ux), Vy.
Now (π−1)∗|hk(Ux)gS3 will given another definition of metric. But we note
(π−1)∗(hk)∗gS3 = (π−1)∗gS3 since h is an isometry, we know they give the same
definition of metric.

Hence, we have a well-defined metric gy on Vy. Moreover, we can see the re-
lation π∗gy = gS3 |π−1(Vy). Hence gy1 , gy2 will agree with each other for different
yi and neighborhood on their common area. So we can form a global metric g
on S3/G such that π∗g = gS3 and moreover, π will be a local isometry.
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Now, for any geodesic γ in S3/G, we can consider its lifting γ̃. Clearly γ̃ will
be a geodesic arc in S3 jointing p and q for some p, q ∈ S3. Note the geodesic
in S3 is just a part of great circles, so we can extend γ̃ to be a closed geodesic.
Hence the geodesic π ◦ γ̃ will extend γ and become a closed geodesic in S3/G.

Now let’s consider the curves c(t) = (eit, 0) ∈ S3. It is a geodesic since
it just a big circle on S3. Moreover, hk ◦ c will be the same geodesic upto
reparameterization. This actually shows G acts on S1 := {(eit, 0) : t ∈ R} freely
and properly. So the after taking quotient, we can get S1 covering a closed
geodesic in S3/G precisely q times. Hence the quotient of c will have length 2π

q
if we don’t count multiplicity.

On the other hand, for any closed geodesic γ(t) : [0, 1]→ S3/G, we can lift to
S3 to get a geodesic arc γ̃ jointing p, hk(p) for some 0 ≤ k ≤ q− 1. By the local
isometry, we know π∗γ̃

′(0) = π∗γ̃
′(1) = γ′(0). So hk∗ γ̃′(0) = γ̃′(1). This mean

hk ◦ γ̃ will be a extension of γ̃. Let c(t) be the great circle that γ̃ lying. If k 6= 0,
we actually know h will fix the great circle c(t) since k, q are coprime. Same
reason above shows the length of γ will be 2π

q if we do not count multiplicity.
So if we consider the geodesic c(t) = (cos t, 0, 0, sin t). This time h will map

c(t) to another geodesic on S3. At least we note hk(c(0)) will be different q
points for k = 0, · · · , q − 1, so hk ◦ c will be q different geodesics. By above we
know π ◦ c(t) cannot have length less than 2π. So we know length of π ◦ c(t) has
length 2π.
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