
MATH 5061 Riemannian Geometry

Solution to Problem Set 2

Problem 1
When we restrict f on 2-sphere S2 ⊂ R3, we will get a map G(x, y, z) =
F |S2(x, y, z) = (x2 − y2, xy, xz, yz).

Note thatG takes the same values on antipodal points. That is, G(−x,−y,−z) =
((−x)2 − (−y)2, (−x)(−y), (−x)(−z), (−y)(−z)) = G(x, y, z). So G will induce
a map G̃ : S2/ ∼= RP2 → R4 where p ∼ q if and only if p = −q for p, q ∈ S2.

Now let’s verity G̃ is injective. Suppose G̃([x1, y1, z1]) = G̃([x2, y2, z2]).
Since x21 + y21 + z21 = 1, we can consider three cases x1 6= 0, y1 6= 0, z1 6= 0.

For the first case x1 6= 0, let t = x2

x1
. From x1y1 = x2y2 we have y1 = ty2.

Put them into x21 − y21 = x22 − y22 , we have (1 − t2)(x21 + y22) = 0 =⇒ t = ±1.
If t = 1,, then x1 = x2, y1 = y2 =⇒ z1 = z2. For t = −1, we will have x1 =
−x2, y1 = −y2, z1 = −z2. No matter what, we have [(x1, y1, z1)] = [(x2, y2, z2)].

For the other cases y1 6= 0, y2 6= 0, we have the similar argument to show
[(x1, y1, z1)] = [(x2, y2, z2)].

So we get G̃ is indeed injective. This shows G̃ is homeomorphic to its image
by the result in Topology.

Now, we need to check G̃ is immersion. Note that the quotient map π :
S2 → RP2 is locally diffeomorphism. So we only need to verify G : S2 → R4 is
an immersion.

Fix any p0 = (x0, y0, z0) ∈ S2. Since S2 is a submanifold of R3, we can
identify the Tp0(S2) with the subspace of R3. Note that Tp0(S2) should perpen-
dicular to p0, and hence Tp0(S2) can be spanned any two non-zero vectors of
the vectors X1 = (−y0, x0, 0), X2 = (0,−z0, y0), X3 = (−z0, 0, x0). In order to
proof G is an immersion, we need to show {dG(X1), dG(X2), dG(X3)} spans a
space at least dimension 2 in TG(p0)R4 ' R4.

Let ι : S2 → R3 be the immersion of S2 into R3. So G = F ◦ ι, dG = dF ◦dι.
Note that we already know Im(dι) spanned by X1, X2, X3 by above tangent
space identification.

Direct calculation of dF at (x, y, z) gives us

dF =


2x −2y 0
y x 0
z 0 x
0 z y
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Hence

dFp0(X1) = (−4x0y0, x
2
0 − y20 ,−y0z0, x0z0)

dFp0(X2) = (2y0z0,−x0z0, x0y0, y20 − z20)

dFp0(X3) = (−x0z0,−y0z0, x20 − z20 , x0y0)

It’s easy to verify at least two of above vectors are linearly independent provided
x20 + y20 + z20 = 1.

Combining that G̃ is a homeomorphism into its image and an immersion, we
know G̃ : RP2 → R4 is indeed an embedding.

Problem 2
For any f ∈ C∞(M), we directly compute,

[X, [Y,Z]]f = X([Y,Z]f)− [Y, Z](Xf)

= X(Y Zf − ZY f)− Y ZXf + ZY Xf

= XY Zf − Y ZXf +XZY f − ZY Xf

Similarly

[Y, [Z,X]]f = Y ZXf − ZXY f + Y XZf −XZY f
[Z, [X,Y ]]f = ZXY f −XY Zf + ZY Xf − Y XZf

Adding them up

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]]f

= (XY Z + Y ZX + ZXY )f − (Y ZX + ZXY +XY Z)f

(XZY + Y XZ + ZY X)f − (ZY X +XZY + Y XZ)f

= 0

Hence
[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Problem 3
Let f ∈ C∞(N) be any smooth function on N . For any X ∈ Γ(TM), we will
have

(φ∗X)(f) ◦ φ = X(f ◦ φ)

This is because for any p ∈M , Xp(f ◦φ) = φ∗(Xp)(f), and note φ∗(Xp) is a
vector at φ(p), we have φ∗(Xp)(f) = φ∗X(f)(φ(p)), which is the what we want.

Hence,

(φ∗X)(φ∗Y )(f) ◦ φ = X((φ∗Y )(f) ◦ φ) = X(Y (f ◦ φ)) = XY (f ◦ φ)

So

([φ∗X,φ∗Y ]f) ◦ φ = XY (f ◦ φ)− Y X(f ◦ φ) = [X,Y ](f ◦ φ) = φ∗[X,Y ](f) ◦ φ
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Note that φ is a diffeomorphism, so we have

[φ∗X,φ∗Y ]f = φ∗[X,Y ](f)

as a function on N . Hence [φ∗X,φ∗Y ] = φ∗[X,Y ].
Now let {φt}t∈R be the flow generated by Y . If Y is not compactly supported,

we will only require {φt}t∈(−ε,ε) defined near a fixed point p. Since φt is a local
diffeomorphism near p, we have

(φt)∗ [Z,X] = [(φt)∗Z, (φt)∗X]

Take derivative with respect to t at t = 0, we will have

[[Z,X], Y ] = [[Z, Y ], X] + [Z, [X,Y ]]

at p where we’ve used the definition of derivative and right hand side comes
from by inserting a middle term in the limit.

Using [X,Y ] = [Y,X], we will have

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Problem 4
By definition of pull-back, we have

(φ∗tα)(Y1, · · · , Yq)(x) = αφt(x)(φt∗Y1, · · · , φt∗Yq)

with x ∈M where φt is the flow generated by X.
So

(LXα)(Y1, · · · , Yq)(x)

= lim
t→0

1

t
((φ∗tα) (Y1, · · · , Yq)(x)− αx(Y1, · · · , Yq))

= lim
t→0

1

t

(
αφt(x)(φt∗Y1, · · · , φt∗Yq)− αx(φt∗Y1, · · · , φt∗Yq)

)
+

q∑
i=1

lim
t→0

1

t
[αx(φt∗Y1, · · · , φt∗Yi−1, φt∗Yi, Yi+1, · · · , Yq)

− αx(φt∗Y1, · · · , φt∗Yi−1, Yi, Yi+1, · · · , Yq)]

=X(α(Y1, · · · , Yq))(x) +

q∑
i=1

αx(Y1, · · · , Yi−1,LXYi, Yi+1, · · · , Yq)

=X(α(Y1, · · · , Yq))(x)−
q∑
i=1

αx(Y1, · · · , Yi−1, [X,Yi], Yi+1, · · · , Yq)

Since the above identity holds for all x ∈M , we have

(LXα)(Y1, · · · , Yq) = X(α(Y1, · · · , Yq))−
q∑
i=1

α(Y1, · · · , Yi−1, [X,Yi], Yi+1, · · · , Yq)
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Problem 5
(a). We write α = ι∗

(∑n
k=0 dz

k ∧ dzk
)
, the 2-form on S2n+1.

For any y ∈ CPn, we can find x ∈ S2n+1 such that p(x) = y. Since p is a
projection and dp : TxS2n+1 → TyCPn is surjective, we know if such ω exist,
then it is completely determined by α. Namely, for any Y1, Y2 ∈ TyCPn, we
can find X1, X2 ∈ TxS2n+1 such that dp(Xj) = Yj , j = 1, 2. Then we define
ωy(Y1, Y2) = αx(X1, X2).

But before that, we need to verify the above definition doesn’t depend on
the choice of Xj and the point x.

First, we claim the following statement. If X ∈ TxS2n+1 with dp(X) = 0 in
TyRPn, then αx(X,X1) = 0 for any X1 ∈ TxS2n+1.

As a corollary, this will imply the definition of ωy does not rely on the choice
of Xj .

To prove the above statement, let’s identify the TxS2n+1 with the subspace
of TxCn+1 ' Cn+1. TxCn+1 has a canonical basis {∂x0

, · · · , ∂xn
, ∂y1 , · · · , ∂yn}

where we use ∂∗ := ∂
∂∗ . But for convenience, we use A = {∂zj , ∂zj}0≤j≤n, the

dual frame of {dzj , dzj}0≤i≤n, as our basis for TxCn+1 ' Cn+1. Note that the
inner product under this basis is as following〈

∂zj , ∂zk
〉

=
1

2
δjk,

〈
∂zj , ∂zk

〉
= 0,

〈
∂zj , ∂zk

〉
= 0.

Suppose x = (z0, · · · , zn). With the basis A, we can write x =
∑n
i=0 zj∂zj +

zj∂zj .
By the geometric property of sphere, the tangent space TxS2n+1 is just the

subspace containing the vectors perpendicular to position vector x. That is

TxS2n+1 = {X ∈ TxCn+1 : 〈X,x〉 = 0}.

Let’s define a new vector Vx related to x by Vx = i
∑n
j=0 zj∂zj−zj∂zj . (Here

by multiple a complex number i, we make Vx to be a real vector over R2n+2 '
Cn+1.) By a simple calculation, we’ll find 〈Vx, x〉 =

∑n
j=0−

1
2zjzj + 1

2zjzj = 0.
So Vx ∈ TxS2n+1.

Now let’s show that dp(Vx) = 0. Choose a curve γ(t) = (cos t)x+(sin t)Vx. If
one write γ(t) in the standard coordinate, one can get γ(t) = (eitz0, · · · , eitzn) ∈
S2n+1. Clearly p◦γ(t) = [(z0), · · · , zn], which does not rely on t. So d

dtp◦γ = 0.
Hence dp(Vx) = dp(γ′(0)) = 0.

Note that dp : TxS2n+1 → TyCPn is surjective, so dim ker(dp) = 1. Hence we
know ker(dp) is spanned by Vx and moreover, we get an isomorphism T̃xS2n+1 →
TyCPn, where

T̃xS2n+1 = {X ∈ Tx : 〈X,Vx〉 = 0}

the space containing vectors perpendicular to x and Vx.
Finally, we need to show αx(Vx, X) = 0 for any X ∈ TxS2n+1. We decom-

pose X as X = X1 + aVx, where a = 〈X,Vx〉 and X1 ∈ T̃xS2n+1. Note that
αx(Vx, Vx) = 0, we only need to show αx(Vx, V1) = 0.

Suppose X1 =
∑n
j=0 aj∂zj + bj∂zj in the coordinate A. Then we have the
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following results.

〈X1, x〉 = 0 =⇒ 1

2

 n∑
j=0

ajzj + bjzj

 = 0,

〈X1, Vx〉 = 0 =⇒ 1

2

 n∑
j=0

−ajzj + bjzj

 = 0,

=⇒
n∑
j=0

ajzj =

n∑
j=0

bjzj = 0.

So

αx(Vx, X1) =

n∑
k=0

dzk ∧ dzk(Vx, X1)(Push forward the vectors into Cn+1)

=

n∑
k=0

−iakzk − ibkzk = 0 (By above identity).

Thus, we finish the proof of our statement. So this shows the definition of
ωx(Y1, Y2) = αx(X1, X2) does not rely the choice of X1, X2.

Now we need to show the above definition doesn’t rely on choice of x, too.
Suppose we have x̃ ∈ S2n+1 with p(x̃) = p(x) = y. So we will have λx :=

(λz0, · · · , λzn) = x̃ for some λ ∈ C. Since x, x̃ ∈ S2n+1, we actually know
|λ| = 1. Hence λ = eit for some t ∈ R.

Let’s define a diffeomorphism on S2n+1 by

ϕt(x) := eitx = (eitz0, · · · , eitzn)

It’s not hard to verify that ϕt is indeed a diffeomorphism. (Moreover, ϕt
is a flow generated by vector fields Vx.) We note that p ◦ ϕt = p, so we have
dpϕt(x)◦(dφt)x = dpx. So for anyX1, X2 ∈ TxS2n+1, noting (dφt)x (Xi) = eitXi,
we have dpx̃(eitXj) = dpx(Xj) = Yj . To prove the definition is independent of
choice of x, we only need to show αx̃(λX1, λX2) = αx(X1, X2) since those
vectors have the same image under tangent map.

Let suppose Xj =
∑n
k=0 a

(j)
k ∂zk + b

(j)
k ∂zk . Easy calculation shows λXj =∑n

k=0 λa
(j)
k ∂zk + λb

(j)
k ∂zk . Hence,

αx̃(λX1, λX2) =

n∑
k=0

dzk ∧ dzk(λX1, λX2)

=

n∑
k=0

λλa
(1)
k b

(2)
k − λλb

(1)
k a

(2)
k

=

n∑
k=0

a
(1)
k b

(2)
k − b

(1)
k a

(2)
k

=

n∑
k=0

dzk ∧ dzk(X1, X2)

= αx(X1, X2)
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Finally, we get the definition of ω does not rely on the choice of x.
This shows ωy(Y1, Y2) = αx(X1, X2) gives us a well-defined form such that

p∗ω = ι∗
n∑
k=0

dzk ∧ dzk

(b). Let M = (mkl)0≤k,l≤n ∈ U(n+ 1). So
∑n
l=0mklmls = δks.

The natural action ϕM related to M on CPn defined as following

ϕM ([z0, · · · , zn]) = [(z0, · · · , zn)M ]

where (z0, · · · , zn)M should be understood as multiplication by matrix.
Let ϕ̃M (z0, · · · , zn) = (z0, · · · , zn)M be the natural action on Cn+1, so ϕM

is just induced by ϕ̃M using quotient map. Once again, one may need to verify
ϕM is well-define. But that is not hart to see.

Let’s show β :=
∑n
k=0 dz

k ∧ dzk is invariant under the action of ϕ̃M . Let
(w0, · · · , wn) = ϕ̃M (x) = (z0, · · · , zn)M . So ϕ̃−1M (w0, · · · , wn) = (w0, · · · , wn)M−1.
Or we can write as zk =

∑n
l=0 wlmlk. So the pull-back form of β under ϕ̃−1M is

n∑
k=0

dzk ∧ dzk =

n∑
k=0

n∑
l,s=0

mlkdw
l ∧ (mskdw

s)

=

n∑
k,l,s=0

mskmlkdw
l ∧ dws

=

n∑
l,s=0

δsldw
l ∧ dws

=

n∑
l=0

dwl ∧ dwl

Hence β is indeed invariant under the action of ϕ̃M .
Note that by the construction of ω in (a), we know w is uniformly deter-

mined by β. So pass to the quotient map, we know ω should be invariant under
the action of ϕM .

(c). Since ω is invariant under the natural action ϕM for M ∈ U(n + 1), we
know that ωk is also invariant under the action of ϕM since the pull-back of
diffeomorphism keeps the wedge problem of differential form.

Now we show ωk ∈ Ω2kCPn is non-zero. Actually we only need to show it is
non-zero for k = n since ωk1 = 0 =⇒ ωk2 = 0 for k2 ≥ k1.

Since for any point y ∈ CPn, we can find a natural action ϕM such that
ϕM (y) = [(1, 0, · · · , 0)] since U(n + 1) is transitive on sphere S2n+1. Using
the invariant of ω under U(n + 1), we only need to show ωn is non-zero at
[(1, 0, · · · , 0)].

Let x0 = (1, 0, · · · , 0). By the pull-back property, we have p∗ωn = αn. Note
that when restricting Tx0S2n+1 ' {(y0i, z1, · · · , zn) ∈ Cn+1 : y0 ∈ R}, the term
dx0 = 0. So αx0

=
∑n
k=1 z

k ∧ zk. Hence

αnx0
= n!z1 ∧ z1 ∧ · · · ∧ zn ∧ zn
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This is clearly non-zero. Hence ωnp(x0)
is non-zero.

This shows ωk is non-zero for any 1 ≤ k ≤ n.

Remark. In the view of Symplectic Geometry, the ω defined above is the
canonical symplectic form on CPn. Since CPn has a natural complex structure,
together with this form and canonical metric, we can find CPn is indeed a Kähler
manifold. Although we didn’t use the result coming from Symplectic Geometry
explicitly, there are still many things borrowed from Symplectic Geometry.

Moreover, the ω is called Fubini-Study Form. Up to a constant, ω has
form

ωFS =

 n∑
j=0

dzj ∧ dzj

‖z‖2
−

n∑
j,k=0

zjzkdz
j ∧ dzk

‖z‖4


where ‖z‖2 =

∑n
k=0 |zk|

2 in homogeneous coordinates [(z0, · · · , zn)]. In the
coordinate chart {z0 6= 0}, [(z0, z1, · · · , zn)] → (w1, · · · , wn) ∈ Cn, where wj =
zj
z0
, ωFS has the form

ωFS =

 n∑
k=1

dwk ∧ dwk

(1 + |w|2)
−

n∑
j,k=1

wjwkdw
j ∧ dwk

(1 + |w|2)2


where |w|2 =

∑n
k=1 |wk|

2.
So if one can get the exact expression of ω in the local coordinate, there

might be a direct proof for this problem. One only need to verify this definition
does not rely the choice of coordinate so it indeed defines a global two form
and calculating its pull-back to show it indeed agree with the relation in the
problem.

One way to get the expression of ωFS is to define the "inverse" map. Let
π : Cn+1\{0} → S2n+1, π(x) = x

‖x‖ be the canonical projection of S2n+1(This is
a vector bundle over S2n+1), the pull-back form of β will exact has expression
listed above. Then on coordinate {z0 6= 0}, we just take z0 = 1 to get the
expression of ω in the local coordinate chart.
Remark. One can take n = 1 to get the understanding of above proof. For
example, suppose x = (a0 + ib0, a1 + ib1) = (a0, b0, a1, b1) ∈ S3, then Vx =
(−b0, a0,−b1, a1). The space T̃xS3 is spanned by (−a1, b1, a0,−b0), (−b1,−a1, b0, a0).
The dpx is just like the projection from TxS3 to T̃xS3. The ω is just the volume
form on CP1 ' S2 up to a constant.
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