MATH 5061 Riemannian Geometry

Solution to Problem Set 2

Problem 1

When we restrict f on 2-sphere S? C R?, we will get a map G(x,y,2) =
F|Sz (I’ Y, Z) = (12 - y2a ryY,Trz, yZ)

Note that G takes the same values on antipodal points. That is, G(—z, —y, —z) =
((=2)* = (=9)% (=2)(~y), (=2)(~2), (=y)(=2)) = G(z,y, 2). So G will induce
amap G : S?/ ~=RP? — R* where p ~ ¢ if and only if p = —q for p,q € S%.

Now let’s verity G is injective. Suppose G([z1,y1,21]) = G([z2,y2, 22]).
Since #? + y? + 22 = 1, we can consider three cases z1 # 0,4, # 0,21 # 0.

For the first case 1 # 0, let t = % From x1y1 = x2y2 we have y; = tys.
Put them into 2 — y? = 23 — y2, we have (1 —t?)(z? +932) =0 = t = +1.
Ift =1,, then 1 = z9,y1 = yo = 21 = 29. For t = —1, we will have 1 =
—Z9,Y1 = —Y2,21 = —2z2. No matter what, we have [(x1,y1,21)] = [(z2, y2, 22)]-

For the other cases y; # 0,y # 0, we have the similar argument to show
(21,91, 21)] = [(2, 92, 22)].

So we get G is indeed injective. This shows G is homeomorphic to its image
by the result in Topology.

Now, we need to check G is immersion. Note that the quotient map 7 :
S? — RP? is locally diffeomorphism. So we only need to verify G : S — R* is
an immersion.

Fix any po = (20,%0,20) € S?. Since S? is a submanifold of R?, we can
identify the T}, (S?) with the subspace of R3. Note that 7}, (S?) should perpen-
dicular to pg, and hence T}, (S?) can be spanned any two non-zero vectors of
the vectors X1 = (—vo, 0, 0), X2 = (0, —20,¥0), X3 = (—20,0,20). In order to
proof G is an immersion, we need to show {dG(X}),dG(X2),dG(X3)} spans a
space at least dimension 2 in Tg(pD)R4 ~ R%.

Let ¢ : S — R? be the immersion of S? into R3. So G = F o, dG = dF odu.
Note that we already know Im(d:) spanned by X;, Xo, X3 by above tangent
space identification.

Direct calculation of dF at (z,y, z) gives us

2r -2y O
|y z 0
dF = z 0 =z
0 z oy



Hence
dF,, (X1) = (—4@oyo. T3 — Y5, —Yo%0, ToZ0)

dFp, (X2) = (24020, —T020, ToY0, Y — 25)

dFPO (X3) = (—.13020, _y0207xg - 287950190)

It’s easy to verify at least two of above vectors are linearly independent provided
oy +yg+ 25 =1.

Combining that G is a homeomorphism into its image and an immersion, we
know G : RP? — R? is indeed an embedding.

Problem 2

For any f € C*°(M), we directly compute,

(XY, Z)|f = X([Y, Z]f) = [V, Z)(X f)
—X(YZf-2ZYf)—-YZXf+ZYXf
=XYZf-YZXf+XZYf—-ZYXf

Similarly

Y ZX|f=YZXf—-ZXYf+YXZf—XZYf
(Z X, Y|f=ZXYf - XYZf+ZYXf-YXZSf

Adding them up

(XY Z]| + [V, [Z, X]| + [Z, [ X, Y]] f
=(XYZ+YZX+ZXY)f - (YZX +ZXY + XY Z)f
(XZY +YXZ+ZYX)f - (ZYX + XZY +YX2)f
=0
Hence
[X,[Y,Z]]—|—[Y,[Z,XH—|—[Z,[X,YH:O
Problem 3

Let f € C*°(N) be any smooth function on N. For any X € T'(TM), we will
have

(@« X)(f)op=X(fo9)

This is because for any p € M, X,,(fo¢) = ¢.(X,)(f), and note ¢, (X,) is a
vector at ¢(p), we have ¢..(X,)(f) = ¢.X(f)(¢(p)), which is the what we want.
Hence,

(0 X)(6:Y)(f) 0 ¢ = X((¢:Y)(f) 09) = X(Y(f 0 ) = XY (fo9)
So
([0+X,0.Y]f) o= XY (fod) —YX(foop)=[X,Y]|(foo)=0o.[X,Y](f) o9



Note that ¢ is a diffeomorphism, so we have

as a function on N. Hence [¢.X, ¢.Y] = ¢.[X,Y].

Now let {¢:}ter be the flow generated by Y. If Y is not compactly supported,
we will only require {¢;};e(—c ) defined near a fixed point p. Since ¢ is a local
diffeomorphism near p, we have

(01), [Z, X] = [(#¢)+Z, (¢1)X]
Take derivative with respect to t at t = 0, we will have
(2, X].Y] =2, Y], X]|+ [Z,[X,Y]]

at p where we’'ve used the definition of derivative and right hand side comes
from by inserting a middle term in the limit.
Using [X, Y] = [V, X], we will have

[X’ [Y7Z]] + [K [ZvX” + [Za [X7YH =0

Problem 4
By definition of pull-back, we have

(D) (Y1, -+, Yo)(2) = g, (@) (Pes Y1, - 01 Yy)

with x € M where ¢, is the flow generated by X.
So

(Lxa)(Yi, -, Yy)(@)
= lim + (¢70) (Vi -, Y)(@) — aa(Yi,- -, y)

t—0 ¢
o1
= i = (0,0 (01,5 60Yy) = a(Bua¥h, - 00Yy)
1 1
+ lim*[Qx(Qst*Yl,"' 7¢t*Y;—17¢t*Yi,Yi+17"' 7Yq)
= t—0 t

- am(¢t*Y1>"‘ ;¢t*Yz‘71,Yi7Yi+1;"' 7}/:])}

q
=X(a(Y1, -, Y)) @) + D aw(Vi, -+, Yie1, £x Y5, Yign, -+, Yy)
=1

q
:X(Q(Yh a}/q))(‘r) _Zaac(yla aYi—la[Xa}/i]a}/i-l—h"' a}/q)
1=1

Since the above identity holds for all z € M, we have

(EXO{)(Yl,"' a}/q) :X(a(Ylv"' 7Yq))_za(yl7"' a}/i—la[XaYiL}/i-l—lv"' 7Yq

=1



Problem 5

(a). We write v = * (3_, dz" A dz"), the 2-form on $?"F1.

For any y € CP", we can find z € S?"*! such that p(x) = y. Since p is a
projection and dp : T,,S*"*! — T,CP" is surjective, we know if such w exist,
then it is completely determined by «. Namely, for any Y3,Y> € T,CP", we
can find X;, Xy € T,S?"*! such that dp(X;) =Y;,j = 1,2. Then we define
wy (Y1, Y2) = @z (X1, Xa).

But before that, we need to verify the above definition doesn’t depend on
the choice of X; and the point .

First, we claim the following statement. If X € T,,S*"*! with dp(X) = 0 in
T,RP", then (X, X;) =0 for any X; € T,,S*"+1.

As a corollary, this will imply the definition of w, does not rely on the choice
of Xj .

To prove the above statement, let’s identify the 7,S?”*! with the subspace
of T,C"*1 ~ C"*1. T,C""! has a canonical basis {0y, ,05,, Oy, Oy, }
where we use 0, := %. But for convenience, we use A = {(’“)Zj,(%j Yo<j<n, the
dual frame of {dz;,dZ;}o<i<n, as our basis for T,C"*! ~ C""!. Note that the

inner product under this basis is as following

1
<aZj)a§k> = 55]]@‘7 <82]‘782}€> = 07 <&z]a5%k> = O’
Suppose x = (2, - ,2,). With the basis A, we can writez =, 20, +
Zj0z;.
By the geometric property of sphere, the tangent space T,S?"t! is just the
subspace containing the vectors perpendicular to position vector x. That is

T,$*" ={X e T,C"*" : (X, z) = 0}.

Let’s define a new vector V;, related to x by V, =i E;:o 2;0,, —Zj0z,. (Here
by multiple a complex number i, we make V to be a real vector over R2"*+2 ~
C™*1)) By a simple calculation, we’ll find (V,, z) = Z;L:[) —%zjzj + %zjij =0.
So V,, € T,S?"+1,

Now let’s show that dp(V,.) = 0. Choose a curve y(t) = (cost)z+(sint)V,. If
one write v(t) in the standard coordinate, one can get y(t) = (e®zg,--- ,e'2,) €
§?"+1. Clearly po~y(t) = [(20)," "+ , 2n), which does not rely on t. So $poy = 0.
Hence dp(V,) = dp(y'(0)) = 0.

Note that dp : T,,S*" ™! — T,,CP" is surjective, so dim ker(dp) = 1. Hence we
know ker(dp) is spanned by V,, and moreover, we get an isomorphism T,S*+1
T, CP", where

T,8"" = (X €T, : (X,V,) =0}

the space containing vectors perpendicular to x and V.

Finally, we need to show a,(V,, X) = 0 for any X € T,,S*"*1. We decom-
pose X as X = X| + aV,, where a = (X,V,) and X; € T,S***!. Note that
az(Ve, Vo) = 0, we only need to show a,(V,, V1) =0.

Suppose X7 = Z?:o a;0,, + b;0z, in the coordinate A. Then we have the



following results.

1 n
(X1,2)=0 = 5 > a7z + bz | =0,
=0
1 n
<X1,Vx> =0 = 5 Z—aﬁj + ijj =0,

I
=)

J

n n
— Za]?j = ijzj =0.
Jj=0 J=0
So

a,(Vy, X1) = Z dz* A dz¥(V,, X1)(Push forward the vectors into C" 1)

k=0
n

= Z —tagZy — ibpzi, = 0 (By above identity).
k=0
Thus, we finish the proof of our statement. So this shows the definition of
wy(Y1,Y2) = a, (X1, X2) does not rely the choice of X7, Xs.

Now we need to show the above definition doesn’t rely on choice of x, too.

Suppose we have 7 € S?"*! with p(Z) = p(z) = y. So we will have \z :=
(Azo, -+ ,Azp) = & for some A € C. Since x,7 € S>"*! we actually know
|A\| = 1. Hence X\ = e’ for some t € R.

Let’s define a diffeomorphism on S?"*! by

oi(x) = er = (e"2g,- -, e 2,)

It’s not hard to verify that ¢, is indeed a diffeomorphism. (Moreover, ¢;
is a flow generated by vector fields V,..) We note that p o ¢ = p, so we have
dpe,(2)°(ddt) s = dps. So for any X1, X, € T, S+, noting (doy), (X;) = e X;,
we have dpz(e”X;) = dp,(X;) =Y;. To prove the definition is independent of
choice of x, we only need to show az(AX1,AXs5) = a,(X;1,X2) since those
vectors have the same image under tangent map.

Let suppose X; = Y 1, agf )(‘Lk + b,(j )a;k. Easy calculation shows AX; =

o Aan)azk + ng)agk. Hence,

az(AX1,AXp) = Y d2¥ A dZF(AX, AXy)
k=0

=Y Ma o — Xabgal
k=0

_ Za](:)bgf) . bgcl)a](f)
k=0

= Zdzk N dEk(Xl,XQ)
k=0

= a, (X1, X3)



Finally, we get the definition of w does not rely on the choice of x.
This shows wy (Y1,Y2) = a, (X1, X2) gives us a well-defined form such that

n
prw=1" Z dzF A dzF
k=0

(b). Let M = (mkl)ogkﬁlgn € U(TL + ].) So Zln:() M Ms = Oks-
The natural action s related to M on CP" defined as following

QDM([ZO"" azn]) - [(ZOa"' 7Zn)M]

where (29, , z,)M should be understood as multiplication by matrix.

Let @ar(z0,- -+, 2n) = (20, , 2n)M be the natural action on C"*!, so
is just induced by ¢j; using quotient map. Once again, one may need to verify
wp is well-define. But that is not hart to see.

Let’s show 3 := >, _, dz* A dz* is invariant under the action of @a;. Let

(U}O,"' ,’U)n) = @M(l‘) = (Z07"' azn)M SO@]T/jl(wOa"' 7wn) = (wOa"' awn)M_l'

Or we can write as z; = Z?:o w;mE. So the pull-back form of S under géj_wl is

n n n
Y odF adzt =" mgdw! A (madw®)
k=0 k=01,5=0
n
= Z mskmlkdwl A dw’®
k

J,s=0
n
= Z Sqdw' A dw®
1,5=0

@

dw' A dw

I
NE

N
Il
o

Hence $ is indeed invariant under the action of ¢y,.

Note that by the construction of w in (a), we know w is uniformly deter-
mined by 8. So pass to the quotient map, we know w should be invariant under
the action of ¢jy.

(¢). Since w is invariant under the natural action ¢, for M € U(n + 1), we
know that w" is also invariant under the action of s since the pull-back of
diffeomorphism keeps the wedge problem of differential form.

Now we show w® € Q?*CP" is non-zero. Actually we only need to show it is
non-zero for k = n since w* =0 = w2 =0 for ky > k.

Since for any point y € CP", we can find a natural action ¢y, such that
om(y) = [(1,0,---,0)] since U(n + 1) is transitive on sphere S?"*!. Using
the invariant of w under U(n + 1), we only need to show w™ is non-zero at
[(1707 T 70)]'

Let o = (1,0,---,0). By the pull-back property, we have p*w™ = a™. Note
that when restricting T}, S?" ! ~ {(yoi, 21, -+ , 2n) € C"*1 : yo € R}, the term
dz® = 0. So oy = > p_; 2F AZ". Hence

o =nlz' AZVA AT AT



This is clearly non-zero. Hence w;(ro) is non-zero.

k is non-zero for any 1 <k <n.

This shows w
Remark. In the view of Symplectic Geometry, the w defined above is the
canonical symplectic form on CP". Since CP" has a natural complex structure,
together with this form and canonical metric, we can find CP" is indeed a Kéhler
manifold. Although we didn’t use the result coming from Symplectic Geometry
explicitly, there are still many things borrowed from Symplectic Geometry.

Moreover, the w is called Fubini-Study Form. Up to a constant, w has
form

i dzi A dz? B Z”: Zjzrdz? A dzZ*

WFs =
) LA SR L
where ||z]|2 = Y1, |zx|? in homogeneous coordinates [(zg,--- ,2,)]. In the
coordinate chart {zo # 0}, [(20,21,- - ,2n)] = (w1, -+ ,wy,) € C", where w; =

i—;, wpg has the form

" dwk A dw® "\ wwrdw! A dw®
Wrs = Z 12y Z T N
o U wl) 5 (|l
where |w|? = S27_, [wg]*.

So if one can get the exact expression of w in the local coordinate, there
might be a direct proof for this problem. One only need to verify this definition
does not rely the choice of coordinate so it indeed defines a global two form
and calculating its pull-back to show it indeed agree with the relation in the
problem.

One way to get the expression of wpg is to define the "inverse" map. Let
7 C"I\{0} — S§"H n(z) = Tay be the canonical projection of S27+1(This is
a vector bundle over S?"*1), the pull-back form of 3 will exact has expression
listed above. Then on coordinate {zy # 0}, we just take zyp = 1 to get the
expression of w in the local coordinate chart.
Remark. One can take n = 1 to get the understanding of above proof. For
example, suppose x = (ag + iby, a1 + ib1) = (ag,bo,a1,b1) € S, then V, =
(=bo, ag, —by, a1). The space T, S? is spanned by (—ay, by, ag, —bg), (—=b1, —a1, bo, ag).
The dp, is just like the projection from T, S* to T,S®. The w is just the volume
form on CP* ~ S2 up to a constant.



