THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050C Mathematical Analysis I Tutorial 11 (April 21)

Boundedness Theorem. Let I := [a, b] be a closed bounded interval and let $f : I \to \mathbb{R}$ be a continuous function on I. Then f is bounded on I.

Maximum-Minimum Theorem. Let I := [a, b] be a closed bounded interval and let $f : I \to \mathbb{R}$ be a continuous function on I. Then f has an absolute maximum and an absolute minimum on I, that is, there exist $x_*, x^* \in I$ such that

 $f(x_*) \le f(x) \le f(x^*)$ for all $x \in I$.

Example 1. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and that $\lim_{x \to -\infty} f = 0$ and $\lim_{x \to \infty} f = 0$.

- (a) Prove that f is bounded on \mathbb{R} .
- (b) Prove that f attains either a maximum or minimum on \mathbb{R} .
- (c) Give an example to show that both a maximum and a minimum need not be attained.

Uniform Continuity Theorem. Let I be a closed bounded interval and let $f : I \to \mathbb{R}$ be continuous on I. Then f is uniformly continuous on I.

Example 2. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be periodic on \mathbb{R} if there exists a number p > 0 such that f(x + p) = f(x) for all $x \in \mathbb{R}$. Prove that a continuous periodic function on \mathbb{R} is bounded and uniformly continuous on \mathbb{R} .

Classwork

1. Let $f : \mathbb{R} \to \mathbb{R}$ be a uniformly continuous function on \mathbb{R} with f(0) = 0. Prove that there exists some C > 0 such that

$$|f(x)| \le 1 + C|x|$$
 for all $x \in \mathbb{R}$.