
Math 217, Autumn 2007
Homework 2 Solutions

1) a) We may assume by the Whitney embedding theorem that M

is embedded in Rn. A vector field X on M can be extended to a
smooth vector field on Rn. If x0 2 M , then the integral curve �(t) with
�(0) = x0 is contained in M and therefore remains in a compact subset
of Rn. Assume that (�t0, t1) is the maximal interval of existence. The
map � : (�t0, t1) ! Rn is Lipschitz since k�0(t)k = kX(�(t))k  C and
hence uniformly continuous. It follows that � extends continuously to
the closed interval. Therefore, if t1 < 1 we can extend � beyond t1.
It follows that t1 = 1 and similarly t0 = 1. Therefore X is complete.

b) Let x be the standard coordinate on R, and consider the vector field
X = x

2
@/@x. The associated ODE is dx/dt = x

2, and the solution of
this with x(0) = 1 is x(t) = 1/(1� t) which only exists for t < 1.

2) a) Assume that X = @/@x

1. The flow is then given by '

t

(x) =
(x1 + t, x

2
, . . . , x

m) and we have '�t⇤(@/@x

i) = @/@x

i for i = 1, . . . ,m.
If we write Y =

P
m

i=1 b

i(x)@/@x

i, then we have
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('�t
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t
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�
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mX
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, . . . , x
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Letting t ! 0 we see that L

X

Y =
P

m

i=1
@b

i

@x

1
@

@x

i . Direct calculation
then shows that this is also the expression for [X, Y ] in this coordinate
system.

b) From their definition both L

X

Y and [X, Y ] are well defined vector
fields on M , and thus to check that they coincide it is su�cient to check
this in any coordinate system.

If P 2 M is such that X(P ) = 0, then we consider two cases. If
there is a sequence of points P

i

! P such that X(P
i

) 6= 0, then we
have L

X

Y = [X, Y ] at P

i

and since both sides are smooth vector fields
(hence continuous) it follows that L

X

Y = [X, Y ] at P . The other
possibility is that there is a neighborhood U of P in which X is zero.
In this case we have '

t

(Q) = Q for Q 2 U , and therefore we see directly
that L

X

Y = 0 at P . Similarly [X, Y ] = 0 at P . Thus in either case we
have L

X

Y = [X, Y ] at P .

3) a) Let � 2 ^m�1(V ) and consider the linear transformation L : V !
^m(V ) given by L(v) = �^v. If � 6= 0, then L is nonzero (see Problem
4a). Since ^m(V ) is 1 dimensional, it follows that the nullspace of L is
m � 1 dimensional. Let v1, . . . , vm�1 be a basis for the nullspace, and
complete it to a basis of V by adding an additional vector v

m

. The
1



2

expression of � in this basis is then of the form av1^. . .^v

m�1 since any
term of the form v

i1 ^ . . .^v

im�2 ^v

m

with 1  i1 < . . . < i

m�2  m�1
has nonzero wedge product with v

j

for some j with 1  j  m � 1.
Therefore � is simple.

b) Let e1, . . . e4 be the standard basis for R4 and let � = e1^e2+e3^e4.
We see that �^� = 2e1^ . . .^e4 6= 0 and therefore � cannot be simple.

c) Another basis v1, . . . , vk

for W would be of the form v

j

=
P

k

i=1 a

i

j

e

i

where A = (ai

j

) is a nonsingular k ⇥ k matrix. We then have v1 ^
. . . ^ v

k

= det(A)e1 ^ . . . ^ e

k

. It follows that the map F from k-
dimensional subspaces of V to simple elements of the projective space
P = P (^k(V )) given by F (W ) = [e1^. . .^e

k

] is well defined (we use the
notation [�] to denote the line through the origin containing a nonzero
element of ^k(V )). It is clear that the map F is onto. To see that it is
one-one, suppose that F (W1) = F (W2). Let e1, . . . , ek

be a basis for W1

and v1, . . . , vk

a basis for W2. We then have v1^ . . .^v

k

= ae1^ . . .^e

k

for a nonzero number a. By completing e1, . . . , ek

to a basis for V and
expressing a vector v in terms of this basis, we can see that v is in W1 if
and only if v ^ e1 ^ . . .^ e

k

= 0. It follows that v

i

2 W1 for i = 1, . . . , k
and thus W2 = W1 as required.

4) a) It su�ces to show that if ↵ 2 ^k(V ) such that ↵ ^ � = 0 for
all � 2 ^m�k(V ) then ↵ = 0. To see this we express ↵ in terms of
a basis and show that each of the coe�cients is 0. To show that the
coe�cient of the monomial e

i1 ^ . . . ^ e

ik
is zero, we wedge ↵ with the

complementing monomial � = e

j1^. . .^e

jm�k
. Since the wedge product

of � with e

i1^. . .^e

ik
is nonzero while the wedge product with all other

basis elements of ^k(V ) is zero, the condition that ↵ ^ � = 0 implies
that the coe�cient of ↵ corresponding to the monomial e

i1 ^ . . .^ e

ik
is

zero. Since this was an arbitrary basis element, it follows that ↵ = 0.

b) We define ⇤� to be the unique element of ^m�k(V ) which satisfies
↵^ ⇤� = h↵, �i ⇤ 1 for all ↵ 2 ^k(V ). By part a there is a unique such
element and ⇤ defines a linear transformation from ^k(V ) to ^m�k(V ).
since these vector spaces are of the same dimension, to check that ⇤ is
an isomorphism it su�ces to check that ⇤� = 0 only if � = 0. To see
this, note that if ⇤� = 0, then we have h↵, �i = 0 for all ↵ 2 ^k(V )
and hence � = 0 since g is nondegenerate.

c) We may replace v1, . . . , vk

by orthonormal vectors and complete to
an orthonormal basis v1, . . . , vm

of V . If we take any basis element
↵ = v

i1 ^ . . . ^ v

ik
of ^k(V ), and we let � = v

k+1 ^ . . . ^ v

m

, then we
have ↵ ^ � = 0 unless ↵ = v1 ^ . . . ^ v

k

, and v1 ^ . . . ^ v

k

^ � = ⇤1.
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Therefore � = ⇤(v1^ . . .^v

k

) which represents the orthogonal (m�k)-
plane.

d) From part c we see that ⇤ takes an orthonormal basis to an or-
thonormal basis and therefore is an isometry from ^k(V ) to ^m�k(V ).
Thus we have for ↵, � 2 ^k(V ), ⇤↵ ^ ⇤2

� = h⇤↵, ⇤�i ⇤ 1 = ↵ ^ ⇤�.
Now ↵ ^ ⇤� = � ^ ⇤↵ = (�1)k(m�k) ⇤ ↵ ^ �, so we have ⇤↵ ^ ⇤2

� =
(�1)k(m�k) ⇤↵^�. Since this holds for all ↵, ⇤ is a linear isomorphism,
and the wedge product pairing is nondegenerate, we can conclude that
⇤2

� = (�1)k(m�k)
� for all � 2 ^k(V ) as required.

5) a) Let e1, e2 be an orthonormal basis with ⇤1 = e1 ^ e2. We then
have ⇤e1 = e2 and ⇤e2 = �e1, so this is the linear transformation
which rotates by 90o in the counterclockwise direction (as defined by
the orientation).

b) We have ⇤2 = 1 by Problem 4d, and so the eigenvalues of ⇤ are
1 and �1. If we choose an orthonormal basis e1, . . . , e4 with positive
orientation, then we can explicitly write bases for the eigenspaces. We
have

{e1 ^ e2 + e3 ^ e4, e1 ^ e3 � e2 ^ e4, e1 ^ e4 + e2 ^ e3}
is a basis for the +1 eigenspace, and

{e1 ^ e2 � e3 ^ e4, e1 ^ e3 + e2 ^ e4, e1 ^ e4 � e2 ^ e3}
for the �1 eigenspace.


