Homewdrk 2 Solutions

1) a) We may assume by the Whitney embedding theorem that M
is embedded in R". A vector field X on M can be extended to a
smooth vector field on R™. If zy € M, then the integral curve (¢) with
~v(0) = zg is contained in M and therefore remains in a compact subset
of R™. Assume that (—to, ;) is the maximal interval of existence. The
map 7 : (—to, 1) — R™ is Lipschitz since ||[7/(¢)|| = | X (7(2))|| < C and
hence uniformly continuous. It follows that v extends continuously to
the closed interval. Therefore, if t; < oo we can extend 7 beyond ;.
It follows that t; = oo and similarly ¢y = oo. Therefore X is complete.

b) Let = be the standard coordinate on R, and consider the vector field
X = 2?0/0x. The associated ODE is dz/dt = x?, and the solution of
this with 2(0) = 1 is z(¢t) = 1/(1 — t) which only exists for ¢ < 1.

2) a) Assume that X = 9/9z'. The flow is then given by ¢i(z) =
(x' +t,2%, ..., 2™) and we have ¢_,(0/0x") = 0/dx" fori =1,...,m.
If we write Y = 7", b'(2)0/02", then we have

((cp_t)*(Y(got(P))—Y(P))/t = Z ((bi(xl—Hf, 2. ,xm)—bi(x))/t)a/(?xi.

i=1

Letting ¢ — 0 we see that LyxY = Zﬁl gi’i 8‘;. Direct calculation
then shows that this is also the expression for [X, Y] in this coordinate

system.

b) From their definition both LxY and [X,Y] are well defined vector
fields on M, and thus to check that they coincide it is sufficient to check
this in any coordinate system.

If P € M is such that X(P) = 0, then we consider two cases. If
there is a sequence of points P; — P such that X (P;) # 0, then we
have LxY = [X,Y] at P; and since both sides are smooth vector fields
(hence continuous) it follows that LxY = [X,Y] at P. The other
possibility is that there is a neighborhood U of P in which X is zero.
In this case we have p;(Q) = @ for @ € U, and therefore we see directly
that LxY =0 at P. Similarly [X,Y] =0 at P. Thus in either case we
have LxY = [X,Y] at P.

3) a) Let 0 € A™ (V) and consider the linear transformation L : V' —
AN™(V) given by L(v) = o Av. If o # 0, then L is nonzero (see Problem
4a). Since A™(V) is 1 dimensional, it follows that the nullspace of L is
m — 1 dimensional. Let vq,...,v,,_1 be a basis for the nullspace, and

complete it to a basis of V' by adding an additional vector v,,. The
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expression of ¢ in this basis is then of the form avy A. . .Av,,_1 since any
term of the form v;, A...Av; _, Avy, with1 <14y < ... <o <m—1
has nonzero wedge product with v; for some j with 1 < j7 < m — 1.
Therefore o is simple.

b) Let ey, . .. e4 be the standard basis for R* and let 0 = e; Aeg+e3/Aey.
We see that o Ao = 2e; A...Aey # 0 and therefore o cannot be simple.

¢) Another basis vy, ..., v, for W would be of the form v; = Y25 a’e;
where A = (a!) is a nonsingular k£ x k matrix. We then have v; A
o ANvp = det(A)er A ... Aeg. It follows that the map F' from k-
dimensional subspaces of V' to simple elements of the projective space
P = P(A*(V)) given by F(W) = [e1A. .. Aey] is well defined (we use the
notation [o] to denote the line through the origin containing a nonzero
element of A*(V)). It is clear that the map F is onto. To see that it is
one-one, suppose that F'(W;) = F(W,). Let ey, ..., ex be a basis for W)
and vy, ..., v, a basis for W5, We then have vi A...Av, = aei A...Aey
for a nonzero number a. By completing ey, ..., e; to a basis for V' and
expressing a vector v in terms of this basis, we can see that v is in Wy if
and only if v Aeg A... Aep = 0. It follows that v; € Wy fori=1,...,k
and thus W5 = W; as required.

4) a) Tt suffices to show that if o € A¥(V) such that a A 8 = 0 for
all 3 € A™*(V) then @ = 0. To see this we express « in terms of
a basis and show that each of the coefficients is 0. To show that the
coefficient of the monomial e;; A ... Ae;, is zero, we wedge a with the
complementing monomial 3 = e;, A...Ae;, _,. Since the wedge product
of B with e;, A...Ae;, is nonzero while the wedge product with all other
basis elements of AF(V) is zero, the condition that a A 3 = 0 implies
that the coefficient of a corresponding to the monomial e;; A... Ae;, is
zero. Since this was an arbitrary basis element, it follows that o = 0.

b) We define 3 to be the unique element of A™~*(V') which satisfies
aAxf=(a,8)*1 for all &« € A¥(V). By part a there is a unique such
element and * defines a linear transformation from A*(V) to A™=k(V).
since these vector spaces are of the same dimension, to check that x is
an isomorphism it suffices to check that %3 = 0 only if 5 = 0. To see
this, note that if *3 = 0, then we have (o, 3) = 0 for all a € A¥(V)
and hence 3 = 0 since ¢ is nondegenerate.

c) We may replace vy, ..., v; by orthonormal vectors and complete to
an orthonormal basis vq,...,v, of V. If we take any basis element
a=uv, A...ANv;, of AF(V), and we let ¢ = vgy1 A ... A vy, then we
have a Ao = 0 unless @« = v1 A ... Avg, and v1 A ... Av, Ao = *1.
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Therefore o = *(v; A ... Avg) which represents the orthogonal (m — k)-
plane.

d) From part ¢ we see that * takes an orthonormal basis to an or-
thonormal basis and therefore is an isometry from AF(V) to A™7F(V).
Thus we have for o, 3 € AF(V), xa A 28 = (xa,*8) x 1 = a A x[.
Now a A %3 = BN xa = (—1)’“(’”*’“) x o A 3, so we have xa A 23 =
(—1)km=k) x oy A 3. Since this holds for all a, * is a linear isomorphism,
and the wedge product pairing is nondegenerate, we can conclude that
#23 = (—=1)*m=kK) 3 for all B € A¥(V) as required.

5) a) Let e;,es be an orthonormal basis with x1 = e; A es. We then
have xe; = ey and *e; = —eq, so this is the linear transformation
which rotates by 90° in the counterclockwise direction (as defined by
the orientation).

b) We have **> = 1 by Problem 4d, and so the eigenvalues of * are
1 and —1. If we choose an orthonormal basis ey, ..., es with positive
orientation, then we can explicitly write bases for the eigenspaces. We
have

{e1 Neg+e3Neq,e1 Nes —eg ANeg,eq ANeg+es Nest
is a basis for the +1 eigenspace, and
{61/\62 —63/\64,€1A€3+62/\64,€1 /\64—62/\63}

for the —1 eigenspace.



