Homework 1 Solutions

1) Denote by M the smooth manifold which is given by an atlas on the
topological manifold R. In order to show that M is diffeomorphic to
R with its standard smooth structure it suffices to construct a smooth
function f on M with df nowhere 0. Such a function is then strictly
increasing or strictly decreasing and thus (by the inverse function theo-
rem) is a diffeomorphism of M onto its image f(M) which is a (possibly
infinite) open interval. Since any such interval is diffeomorphic to R
with its standard smooth structure, this gives the desired conclusion.

In order to find such a function f it is sufficient to find a 1-form
w which is nowhere 0 since we may then integrate w to get f with
df = w. To find w, observe that we may take the sets U in our atlas to
be connected and we may take the coordinate maps to xy to be strictly
increasing by replacing xy by —zy if necessary. We can then choose
a locally finite covering C of M by coordinate charts, and write w =
> vee Sudry where (p is a smooth partition of unity subordinate to the
covering. Since for overlapping charts U,V € C we have dxy /dxy > 0,
it follows that w is nowhere 0.

2) a) Define F': (M1XM2)><M3 — M1X(M2><M3) by F((Pl, PQ),P:;) =
(Py, (Py, P3)). This map is clearly 1-1 and onto. The fact that it is
smooth is just the obvious statement in local coordinates that the map
((z,y),2) = (z,(y, 2)) from (R™ x R™2) x R™ to R™ x (R™ x R™3).
Similarly F~! is smooth. It is also easy to see that the map G :
M; x My — My x My given by G(Py, Py) = (P, Py) is a smooth map
and G = G~ so it is a diffeomorphism.

b) By definition an atlas for M; x My can be taken to be the product
charts Uy x U, with the coordinate mapping ¢ = (¢1, ¢2) where ¢,
defines coordinates in U; and ¢, in Us. Thus if we choose coordinates
x near P € N and coordinates y near m1(f(P)) and z near m(f(P)),
then the local expression of f is given by (y, z) = (y(x), z(x)) and such
a map is smooth if and only if y(z) and z(z) are smooth maps.

3) a) and b) Since H(X,Y) = H(Y,X) + [X,Y](f) and [X,Y] is a
vector field we have [X,Y](f) =0 at P. Thus H(X,Y) = H(Y, X) at
P. Since for any smooth function h defined near P, Xh(P) depends
only on the value of X at P, we see that XY f depends only on X at
P and Y X f depends only on Y at P. Thus H(X,Y') depends only on

X and Y at P.
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c¢) Let N be the nullspace of H; that is,
N={v: H(v,w) =0 for all w e TpM}.

Let eq,...e,. be a basis for N and let V' be a complementing subspace.
It then follows that H is nondegenerate on V' and so the argument in
Problem 6a below produces a basis €,41, . . . , €, so that H(e;, e;) = A\;d;;
where A; is 1 or —1 for r +1 < 4,7 < m. The basis ey,...,e,, then
satisfies the desired condition with \; =0 fori=1,...,r.

If vq,...,v,, is another basis of this type, then those v; for which
A; = 0 lie in N and they must form a basis for N. Thus we may
assume they form the set vq,...,v,. If we assume that there are p of
the basis vectors €,41,...,€r4, for which A; = 1, then we claim that
there are exactly p of the vectors vy, ..., v,, with that property. If there
were p’ such vectors with p’ > p we could find a nonzero vector v which
is a linear combination of those vectors which satisfies H (v, w) = 0 for
all w e N and H(v,v;) =0 for i =r+1,...,r + p. It follows that v
can be expressed as a linear combination of e, 41, ..., e, and therefore
H(v,v) < 0. On the other hand v was chosen as a linear combination
of vy41, ..., Uy which implies H(v,v) > 0. This contradiction implies
p’ < p and reversing the roles of the two bases implies the opposite
inequality. Therefore p’ = p and hence the bases have the same number
of Os, 1s, and —1s.

4) a) In a neighborhood of P the distribution can be defined as the
linear span of the coordinate vector fields 9/0z',...,0/0x", and by
translation of coordinates we may assume that z(P) = 0. It follows
that the integral submanifold through P is the submanifold defined by
2"t = ... =2™ = 0. In the local coordinates the horizontal curve ~(t)
is defined by the curve z = z(t) and the fact that 7 is horizontal is the
condition that dz'/dt = 0 for i = r+ 1,...,m. Since we may assume
that v(0) = P, we have 2" (t) = ... = 2™(t) = 0 for all ¢. Since
this argument may be applied in a neighborhood of any point of ~, it
follows that 7 lies in the integral submanifold containing P as long as
this submanifold continues to extend.

b) If (1,41, 21) and (z3, Y2, 22) are two points, we construct a piece-
wise smooth horizontal curve in three parts. To join (z1,y1,21) to
(x2,y1, 21) we may take the line parallel to the z-axis. We now observe
that for a curve of the form (xq,tys + (1 — t)y1, 2(¢)) for 0 <t < 1 to
be horizontal with z(0) = z; we must have z(t) = 21 + xa(y2 — 1)t
since dz = zdy along the curve. Thus we may join (xs, 1, 21) to the
point (xq,ys, 2;) where z] = 21 + x2(y2 — y1). To join (22, Y9, 2]) to
(22, Yo, 22), we observe that any such horizontal curve would project
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to a closed curve in the xy-plane, and along the curve we would have
dz = zdy. Since the integral of zdy around a closed curve in the plane
represents the enclosed signed area (negative if the curve is clockwise
around a region), we may choose a circle in the plane of signed area
29 — 24 and construct a horizontal curve which projects onto the circle
and begins at (x2, y2, 21). This curve will then end at the desired point

(552, Y2, 2’2)-

5) a) Note that if X and Y are vector fields with Y = F,(X), then if
P € M and ¢ is a smooth function defined near F'(P), we have Y (p) o
F = X(poF) near P. Thus we have (Y1(Ya(p)))oF = X (Ya(p)oF) =
X1Xs5(p o F), and similarly Y5Yi(¢) o F = X5X (¢ o F). Subtracting
we find [Y,Y5)(¢) o F = [X1, X](¢ o F). This implies F,([X;, X,]) =
V1. Vi)

b) Given any point P € M, we may find a neighborhood U of P so
that the restriction of F' to U is an embedding onto a coordinate plane.
It follows that there are smooth vector fields X; defined in U so that
F.(X;) =Y, for i = 1,2. From part a we have [V}, Ys] = F.([X1, X3]),
and therefore [Y7, Y] is tangent to F/(M).

With U as above we observe that the condition that Y; = Z; on F/(M
implies that F,(X;) =Y; = Z; and therefore [V, Ys] = F.([ X1, X3]) =
[Z1, Z5] and thus [Y7,Ys] = [Z, Z5] along ¥ = F(M).

6) a) The proof is by induction on m. For m = 1, any nonzero vector
v € V must satisfy g(v,v) # 0, and therefore e; = (|g(v,v)|)""?v is
the desired basis.

Assume the conclusion is true in dimension m — 1 and consider a
vector space V' of dimension m with a nondegenerate form g. Given
any nonzero vector v, there is a vector w so that g(v,w) # 0 since g is
nondegenerate. It follows that g(v + w,v + w) — g(v,v) — g(w,w) # 0,
so there is a vector e with g(e,e) # 0. Let e; = (|g(e, e)|)~*/%e so that
g(ei,eq) is either 1 or —1. Now let W = {v € V : g(v,e;) = 0}.
Clearly the dimension of W is m — 1, and we consider the restriction of
g to W. We claim that this restriction is nondegenerate. To see this,
suppose v € W with g(v,w) = 0 for all w € W. Since g(v,e;) = 0 and
V is spanned by W together with e; it follows that g(v,w) = 0 for all
w € V and hence v = 0 since g is nondegenerate on V. Therefore the
restriction of g to W is nondegenerate and by the inductive assumption
there is a basis ea, . .., e, for W with g(e;, e;) = \;d;; for 2 <4, j < m.
Since this is also true for i =1 and 1 < 57 < m, the conclusion follows.

The proof that the number of plus and minus 1s is independent of
basis is the same as that given in 3c.



b) By replacing g by —g if necessary we may assume that v < m—v.
Choose the basis so that \; = 1 for z = 1,...,v, and observe that the
subspace spanned by the vectors e; + e,41,...,€, + €, is contained
in the null cone. If there were a subspace of dimension larger than v
contained in the null cone, then it would contain a nonzero vector v with
g(v,e;) =0fori=1,...,v. Thus v can be written as v = > | a’e;,
and g(v,v) = — > 1 (a")* <0, a contradiction.

c¢) We have I(v)(e;) = >0, a/{ej, e;), so we have I(v) = > b’
where b; = 37 | gija’.

7) We first show that i and ii are equivalent. Clearly i implies ii, so
suppose that ii holds. From the previous problem we may choose a
basis ej,..., e, so that g(e;,e;) = Nd;; with \; = 1 for 1 < ¢ <
vand \; = =1 for v +1 < i < m where 1 < v < m (since g is
neither positive nor negative definite). Let V. denote the linear span
of e1,...,e, and V_ denote the span of e, 1,...,m. Given any vector
v € Vi with g(v,v) = 1 and any vector w € V_ with g(w,w) =
—1 we have g(v + w,v + w) = 0 and therefore b(v + w,v + w) = 0.
It follows that b(v,v) 4+ 2b(v,w) + b(w,w) = 0. Similarly v — w is
null for g and thus b(v,v) — 2b(v,w) + b(w,w) = 0. It follows that
b(v,w) = 0 and b(v,v) + b(w,w) = 0. In particular, we see that for
all v € V. and w € V_ we have b(v,w) = 0. The restriction of b to
V. may be diagonalized in an orthonormal basis, so by changing the
basis ey, ..., e, by an orthogonal transformation we may assume that
b(e;, e;) = pid;; for 1 <4 < v. Similarly we may perform an orthogonal
change of basis on V_ and assume that b(e;, e;) = ;0,5 for 1 < i < m.
From above we have b(eq, e;) = —b(e;, ;) for v+ 1 < i < m. Therefore
we have \; = —c for v+ 1 < i < m. Similarly \; = cfor 1 <i<wv. It
follows that b = cg.

Since i clearly also implies iii and iv, we need only show that iii im-
plies ii and iv implies ii to finish the proof. Since the proofs are similar,
we show that iii implies ii. To do this we let the orthonormal basis for
g be chosen as above and define V, and V_ as above. Observe that if v
is any vector with g(v,v) = —1 we may write v = sinh(¢)v, + cosh(t)v_
where v, € V, with g(vy,vy) =1 and v_ € V_ with g(v_,v_) = —1
and t > 0. Since |b(v,v)| < C' is bounded independent of ¢, we have

|b(tanh(t)v, +v_, tanh(t)v, +v_)| < C cosh(t) 2.

Letting t tend to infinity we conclude that b(vy + v_,vy +v_) = 0.
Since any null vector is of this form it follows that b(v,v) = 0 for all
null vectors v. (Note that we did not need the condition that b is
nondegenerate in this problem!)



