
Math 217, Autumn 2007
Homework 1 Solutions

1) Denote by M the smooth manifold which is given by an atlas on the
topological manifold R. In order to show that M is di↵eomorphic to
R with its standard smooth structure it su�ces to construct a smooth
function f on M with df nowhere 0. Such a function is then strictly
increasing or strictly decreasing and thus (by the inverse function theo-
rem) is a di↵eomorphism of M onto its image f(M) which is a (possibly
infinite) open interval. Since any such interval is di↵eomorphic to R
with its standard smooth structure, this gives the desired conclusion.

In order to find such a function f it is su�cient to find a 1-form
! which is nowhere 0 since we may then integrate ! to get f with
df = !. To find !, observe that we may take the sets U in our atlas to
be connected and we may take the coordinate maps to xU to be strictly
increasing by replacing xU by �xU if necessary. We can then choose
a locally finite covering C of M by coordinate charts, and write ! =P

U2C ⇣UdxU where ⇣U is a smooth partition of unity subordinate to the
covering. Since for overlapping charts U, V 2 C we have dxU/dxV > 0,
it follows that ! is nowhere 0.

2) a) Define F : (M1⇥M2)⇥M3 ! M1⇥(M2⇥M3) by F ((P1, P2), P3) =
(P1, (P2, P3)). This map is clearly 1-1 and onto. The fact that it is
smooth is just the obvious statement in local coordinates that the map
((x, y), z) ! (x, (y, z)) from (Rm1 ⇥Rm2)⇥Rm3 to Rm1 ⇥ (Rm2 ⇥Rm3).
Similarly F�1 is smooth. It is also easy to see that the map G :
M1 ⇥M2 ! M2 ⇥M1 given by G(P1, P2) = (P2, P1) is a smooth map
and G = G�1 so it is a di↵eomorphism.

b) By definition an atlas for M1⇥M2 can be taken to be the product
charts U1 ⇥ U2 with the coordinate mapping � = (�1, �2) where �1

defines coordinates in U1 and �2 in U2. Thus if we choose coordinates
x near P 2 N and coordinates y near ⇡1(f(P )) and z near ⇡2(f(P )),
then the local expression of f is given by (y, z) = (y(x), z(x)) and such
a map is smooth if and only if y(x) and z(x) are smooth maps.

3) a) and b) Since H(X, Y ) = H(Y,X) + [X, Y ](f) and [X, Y ] is a
vector field we have [X, Y ](f) = 0 at P . Thus H(X, Y ) = H(Y, X) at
P . Since for any smooth function h defined near P , Xh(P ) depends
only on the value of X at P , we see that XY f depends only on X at
P and Y Xf depends only on Y at P . Thus H(X,Y ) depends only on
X and Y at P .
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c) Let N be the nullspace of H; that is,

N = {v : H(v, w) = 0 for all w 2 TP M}.

Let e1, . . . er be a basis for N and let V be a complementing subspace.
It then follows that H is nondegenerate on V and so the argument in
Problem 6a below produces a basis er+1, . . . , em so that H(ei, ej) = �i�ij

where �i is 1 or �1 for r + 1  i, j  m. The basis e1, . . . , em then
satisfies the desired condition with �i = 0 for i = 1, . . . , r.

If v1, . . . , vm is another basis of this type, then those vi for which
�i = 0 lie in N and they must form a basis for N . Thus we may
assume they form the set v1, . . . , vr. If we assume that there are p of
the basis vectors er+1, . . . , er+p for which �i = 1, then we claim that
there are exactly p of the vectors v1, . . . , vm with that property. If there
were p0 such vectors with p0 > p we could find a nonzero vector v which
is a linear combination of those vectors which satisfies H(v, w) = 0 for
all w 2 N and H(v, vi) = 0 for i = r + 1, . . . , r + p. It follows that v
can be expressed as a linear combination of er+p+1, . . . , em and therefore
H(v, v) < 0. On the other hand v was chosen as a linear combination
of vr+1, . . . , vr+p0 which implies H(v, v) > 0. This contradiction implies
p0  p and reversing the roles of the two bases implies the opposite
inequality. Therefore p0 = p and hence the bases have the same number
of 0s, 1s, and �1s.

4) a) In a neighborhood of P the distribution can be defined as the
linear span of the coordinate vector fields @/@x1, . . . , @/@xr, and by
translation of coordinates we may assume that x(P ) = 0. It follows
that the integral submanifold through P is the submanifold defined by
xr+1 = . . . = xm = 0. In the local coordinates the horizontal curve �(t)
is defined by the curve x = x(t) and the fact that � is horizontal is the
condition that dxi/dt = 0 for i = r + 1, . . . ,m. Since we may assume
that �(0) = P , we have xr+1(t) = . . . = xm(t) = 0 for all t. Since
this argument may be applied in a neighborhood of any point of �, it
follows that � lies in the integral submanifold containing P as long as
this submanifold continues to extend.

b) If (x1, y1, z1) and (x2, y2, z2) are two points, we construct a piece-
wise smooth horizontal curve in three parts. To join (x1, y1, z1) to
(x2, y1, z1) we may take the line parallel to the x-axis. We now observe
that for a curve of the form (x2, ty2 + (1 � t)y1, z(t)) for 0  t  1 to
be horizontal with z(0) = z1 we must have z(t) = z1 + x2(y2 � y1)t
since dz = xdy along the curve. Thus we may join (x2, y1, z1) to the
point (x2, y2, z

0
1) where z01 = z1 + x2(y2 � y1). To join (x2, y2, z

0
1) to

(x2, y2, z2), we observe that any such horizontal curve would project
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to a closed curve in the xy-plane, and along the curve we would have
dz = xdy. Since the integral of xdy around a closed curve in the plane
represents the enclosed signed area (negative if the curve is clockwise
around a region), we may choose a circle in the plane of signed area
z2 � z01 and construct a horizontal curve which projects onto the circle
and begins at (x2, y2, z

0
1). This curve will then end at the desired point

(x2, y2, z2).

5) a) Note that if X and Y are vector fields with Y = F⇤(X), then if
P 2 M and ' is a smooth function defined near F (P ), we have Y (') �
F = X('�F ) near P . Thus we have (Y1(Y2(')))�F = X1(Y2(')�F ) =
X1X2(' � F ), and similarly Y2Y1(') � F = X2X1(' � F ). Subtracting
we find [Y1, Y2](') � F = [X1, X2](' � F ). This implies F⇤([X1, X2]) =
[Y1, Y2].

b) Given any point P 2 M , we may find a neighborhood U of P so
that the restriction of F to U is an embedding onto a coordinate plane.
It follows that there are smooth vector fields Xi defined in U so that
F⇤(Xi) = Yi for i = 1, 2. From part a we have [Y1, Y2] = F⇤([X1, X2]),
and therefore [Y1, Y2] is tangent to F (M).

With U as above we observe that the condition that Yi = Zi on F (M)
implies that F⇤(Xi) = Yi = Zi and therefore [Y1, Y2] = F⇤([X1, X2]) =
[Z1, Z2] and thus [Y1, Y2] = [Z1, Z2] along ⌃ = F (M).

6) a) The proof is by induction on m. For m = 1, any nonzero vector
v 2 V must satisfy g(v, v) 6= 0, and therefore e1 = (|g(v, v)|)�1/2v is
the desired basis.

Assume the conclusion is true in dimension m � 1 and consider a
vector space V of dimension m with a nondegenerate form g. Given
any nonzero vector v, there is a vector w so that g(v, w) 6= 0 since g is
nondegenerate. It follows that g(v + w, v + w)� g(v, v)� g(w,w) 6= 0,
so there is a vector e with g(e, e) 6= 0. Let e1 = (|g(e, e)|)�1/2e so that
g(e1, e1) is either 1 or �1. Now let W = {v 2 V : g(v, e1) = 0}.
Clearly the dimension of W is m�1, and we consider the restriction of
g to W . We claim that this restriction is nondegenerate. To see this,
suppose v 2 W with g(v, w) = 0 for all w 2 W . Since g(v, e1) = 0 and
V is spanned by W together with e1 it follows that g(v, w) = 0 for all
w 2 V and hence v = 0 since g is nondegenerate on V . Therefore the
restriction of g to W is nondegenerate and by the inductive assumption
there is a basis e2, . . . , em for W with g(ei, ej) = �i�ij for 2  i, j  m.
Since this is also true for i = 1 and 1  j  m, the conclusion follows.

The proof that the number of plus and minus 1s is independent of
basis is the same as that given in 3c.



4

b) By replacing g by �g if necessary we may assume that ⌫  m�⌫.
Choose the basis so that �i = 1 for i = 1, . . . , ⌫, and observe that the
subspace spanned by the vectors e1 + e⌫+1, . . . , e⌫ + e2⌫ is contained
in the null cone. If there were a subspace of dimension larger than ⌫
contained in the null cone, then it would contain a nonzero vector v with
g(v, ei) = 0 for i = 1, . . . , ⌫. Thus v can be written as v =

Pm
i=⌫+1 aiei,

and g(v, v) = �
Pm

i=⌫+1(a
i)2 < 0, a contradiction.

c) We have I(v)(ei) =
Pm

j=1 ajhej, eii, so we have I(v) =
P

bi!
i

where bi =
Pm

j=1 gija
j.

7) We first show that i and ii are equivalent. Clearly i implies ii, so
suppose that ii holds. From the previous problem we may choose a
basis e1, . . . , em so that g(ei, ej) = �i�ij with �i = 1 for 1  i 
⌫ and �i = �1 for ⌫ + 1  i  m where 1 < ⌫ < m (since g is
neither positive nor negative definite). Let V+ denote the linear span
of e1, . . . , e⌫ and V� denote the span of e⌫+1, . . . ,m. Given any vector
v 2 V+ with g(v, v) = 1 and any vector w 2 V� with g(w, w) =
�1 we have g(v + w, v + w) = 0 and therefore b(v + w, v + w) = 0.
It follows that b(v, v) + 2b(v, w) + b(w,w) = 0. Similarly v � w is
null for g and thus b(v, v) � 2b(v, w) + b(w, w) = 0. It follows that
b(v, w) = 0 and b(v, v) + b(w, w) = 0. In particular, we see that for
all v 2 V+ and w 2 V� we have b(v, w) = 0. The restriction of b to
V+ may be diagonalized in an orthonormal basis, so by changing the
basis e1, . . . , e⌫ by an orthogonal transformation we may assume that
b(ei, ej) = µi�ij for 1  i  ⌫. Similarly we may perform an orthogonal
change of basis on V� and assume that b(ei, ej) = µi�ij for 1  i  m.
From above we have b(e1, e1) = �b(ei, ei) for ⌫ + 1  i  m. Therefore
we have �i = �c for ⌫ + 1  i  m. Similarly �i = c for 1  i  ⌫. It
follows that b = cg.

Since i clearly also implies iii and iv, we need only show that iii im-
plies ii and iv implies ii to finish the proof. Since the proofs are similar,
we show that iii implies ii. To do this we let the orthonormal basis for
g be chosen as above and define V+ and V� as above. Observe that if v
is any vector with g(v, v) = �1 we may write v = sinh(t)v+ +cosh(t)v�
where v+ 2 V+ with g(v+, v+) = 1 and v� 2 V� with g(v�, v�) = �1
and t > 0. Since |b(v, v)|  C is bounded independent of t, we have

|b(tanh(t)v+ + v�, tanh(t)v+ + v�)|  C cosh(t)�2.

Letting t tend to infinity we conclude that b(v+ + v�, v+ + v�) = 0.
Since any null vector is of this form it follows that b(v, v) = 0 for all
null vectors v. (Note that we did not need the condition that b is
nondegenerate in this problem!)


