THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050C Mathematical Analysis I Tutorial 2 (January 22)

The following were discussed in the tutorial this week:

1 The Completeness Property of \mathbb{R}

Definition. Let S be a nonempty subset of \mathbb{R} . Suppose S is bounded above. Then $u \in \mathbb{R}$ is said to be a **supremum** of S if it satisfies the conditions:

- (i) u is an upper bound of S (that is, $s \leq u$ for all $s \in S$), and
- (ii) if v is any upper bound of S, then $u \leq v$.

Here (ii) is equivalent to

(ii)' if v < u, then there exists $s_v \in S$ such that $v < s_v$.

Remark. (1) u may or may not be an element of S.

- (2) The number u is unique and we write $\sup S = u$.
- (3) inf S can be defined similarly provided S is bounded below.

Example 1. Let $A := \{x \in \mathbb{R} : 1/x > x\}$. Find sup A and inf A, if they exist.

Solution. Note that

$$x \in A \iff \frac{x^2 - 1}{x} < 0 \iff \frac{(x - 1)(x + 1)}{x} < 0 \iff x < -1 \text{ or } 0 < x < 1.$$

Thus $A = (-\infty, -1) \cup (0, 1)$.

It is easy to see that A is not bounded below, so $\inf A$ does not exist.

Next we want to show that $\sup A = 1$. Clearly

$$x < 1$$
 for all $x \in A$.

So 1 is an upper bound of A. Let v < 1.

Want: v is not an upper bound of A, that is $\exists s_v \in A \text{ s.t. } s_v > v$.

Take $s_v := \max\{(v+1)/2, 1/2\}$. Then

$$0 < 1/2 \le s_v < 1,$$

so that $s_v \in A$. Moreover,

$$s_v \ge (v+1)/2 > (v+v)/2 = v.$$

Hence $\sup A = 1$.

The Completeness Property of \mathbb{R} . Every nonempty set of real numbers that has an upper bound also has a supremum in \mathbb{R} .

Example 2. (a) Let S be a nonempty subset of \mathbb{R} that is bounded above, and let a be any real number in \mathbb{R} . Define the set $a + S := \{a + s : s \in S\}$. Show that

$$\sup(a+S) = a + \sup S$$

(b) Let A and B be nonempty subsets of \mathbb{R} that satisfy the property:

 $a \leq b$ for all $a \in A$ and $b \in B$.

Show that $\sup A \leq \inf B$.

Example 3. Suppose that f and g are real-valued functions with common domain $D \subseteq \mathbb{R}$. We assume that f and g are bounded (that is, f(D) and g(D) are bounded).

(a) If $f(x) \leq g(x)$ for all $x \in D$, show that $\sup f(D) \leq \sup g(D)$.

(b) If $f(x) \le g(y)$ for all $x, y \in D$, show that $\sup f(D) \le \inf g(D)$.

Classwork

1. Fill in the blanks to complete the following definition of an infimum.

Suppose $S \subseteq \mathbb{R}$ is nonempty and _____. Then $w \in \mathbb{R}$ is said to be an infimum of S if it satisfies the conditions:

(i) ______ for all $s \in S$, and

- (ii) if w < v, then there exists
- 2. Let $A := \{x \in \mathbb{R} : |x+2| + |1-x| > 5\} \cap \{x \in \mathbb{R} : x \ge 0\}.$
 - (a) What are the elements of the set A?
 - (b) Is A bounded above? Is A bounded below?
 - (c) Find $\sup A$ and $\inf A$, if they exist. Justify your answer.
- 3. Let S be a nonempty subset of \mathbb{R} that is bounded above. Prove that

$$\inf\{-s: s \in S\} = -\sup S.$$

Solution. Let $-S := \{-s : s \in S\}$. For any $s \in S$, we have $s \leq \sup S$, so that $-\sup S \leq -s$. Hence $-\sup S$ is a lower bound of -S.

If v is any lower bound of -S, then $v \leq -s$ for any $s \in S$. Then $s \leq -v$ for any $s \in S$, and hence -v is an upper bound of S. By the definition of supremum, we have $\sup S \leq -v$, so that $v \leq -\sup S$. Therefore $-\sup S$ is the greatest lower bound of -S, that is $\inf(-S) = -\sup S$.