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1 Compact Sets in R

Throughout this section, let (z,) be a sequence in R. Recall that a subsequence (zp, )72,
of (x,) means that (ny);2, is a sequence of positive integers satisfying ny < no < .-+ <
ng < ngy1 < ---, that is, such sequence (ng) can be viewed as a strictly increasing function
n:ke{l,2, .} —n,e{l,2..}.

In this case, note that for each positive integer N, there is K € N such that nxg > N and thus
we have ng, > N for all k > K.

Let us first recall the following two important theorems in real line.

Theorem 1.1 Nested Intervals Theorem Let (I, := [ay,b,]) be a sequence of closed and
bounded intervals. Suppose that it satisfies the following conditions.

(1)) : [1 D13 213D ---.
(i) : lim, (b, — ap) = 0.
Then there is a unique real number & such that (oo In = {£}.

Proof: See [1, Theorem 2.5.2, Theorem 2.5.3]. O

Theorem 1.2 (Bolzano-Weierstrass Theorem) FEuvery bounded sequence in R has a con-
vergent subsequence.

Proof: See [1, Theorem 3.4.8]. O

Definition 1.3 A subset A of R is said to be compact (more precise, sequentially compact) if
every sequence in A has a convergent subsequence with the limit in A.

We are now going to characterize the compact subsets of R. The following is an important
notation in mathematics.

Definition 1.4 A subset A is said to be closed in R if it satisfies the condition:

if (zy) is a sequence in A and lim x,, exists, then limz, € A.

Example 1.5 (i) {a};[a,b];[0,1] U {2}; N; the empty set () and R all are closed subsets of
R.



(ii) (a,b) and Q are not closed.

The following Proposition is one of the basic properties of a closed subset which can be directly
shown by the definition. So, the proof is omitted here.

Proposition 1.6 Let A be a subset of R. The following statements are equivalent.
(i) A is closed.

(ii) For each element x € R\ A, there is 0, > 0 such that (x — 6z, x + d,) N A =0.

The following is an important characterization of a compact set in R. Warning: this result is
not true for the so-called metric spaces in general.

Theorem 1.7 Let A be a closed subset of R. Then the following statements are equivalent.
(i) A is compact.
(ii) A is closed and bounded.

Proof: Tt is clear that the result follows if A = (). So, we assume that A is non-empty.

For showing (i) = (ii), assume that A is compact.

We first claim that A is closed. Let (z,) be a sequence in A. Then by the compactness of A,
there is a convergent subsequence (x,, ) of (x,) with limy z,, € A. So, if (z,) is convergent,
then lim,, x,, = limy, z,,, € A. Therefore, A is closed.

Next, we are going to show the boundedness of A. Suppose that A is not bounded. Fix an
element x; € A. Since A is not bounded, we can find an element x5 € A such that |zg —z1| > 1.
Similarly, there is an element x3 € A such that |x3 — x| > 1 for £ = 1,2. To repeat the same
step, we can obtain a sequence (z,) in A such that |z, — x| > 1 for m # n. From this,
we see that the sequence (x,) does not have a convergent subsequence. In fact, if (z,) has a
convergent subsequence (xp, ). Put L := limg x,,. Then we can find a pair of sufficient large
positive integers p and ¢ with p # ¢ such that |z, — L| < 1/2 and |2,, — L| < 1/2. This
implies that |z,, — z,,| < 1. It leads to a contradiction because |z,, — z5,| > 1 by the choice
of the sequence (z,). Thus, A is bounded.

It remains to show (i7) = (). Suppose that A is closed and bounded.

Let (xy,) be a sequence in A. Thus, (x,,). Then the Bolzano-Weierstrass Theorem assures that
there is a convergent subsequence (xy, ). Then by the closeness of A, limy z,, € A. Thus A is
compact.

The proof is finished.

O

2 Appendix: Compact sets in R, Part 2

For convenience, we call a collection of open intervals {J, : « € A} an open intervals cover
of a given subset A of R, where A is an arbitrary non-empty index set, if each J, is an open



interval (not necessary bounded) and

Theorem 2.1 Heine-Borel Theorem: For any closed and bounded interval [a,b] satisfies
the following condition:

(HB) Given any open intervals cover {Ja}taen of [a,b], we can find finitely many Jo,, .., Jay
such that [a,b] C Jo, U--- U Jay

Proof: Suppose that [a,b] does not satisfy the above Condition (HB). Then there is an open
intervals cover {Ju}aen of [a,b] but it it has no finite sub-cover. Let I; := [a1, b1] = [a, b] and
mq the mid-point of [aq,b1]. Then by the assumption, [a1,m1] or [m1,b1] cannot be covered
by finitely many J,’s. We may assume that [a1,m1] cannot be covered by finitely many J,’s.
Put I := [ag, ba] = [a1, m1]. To repeat the same steps, we can obtain a sequence of closed and
bounded intervals I,, = [ay, b,] with the following properties:

(a) 21232 - ;
(b) limy, (b, — a,) = 0;
(¢) each I,, cannot be covered by finitely many J,’s.

Then by the Nested Intervals Theorem, there is an element ¢ € (), I, such that lim, a,, =
lim,, b, = £. In particular, we have a = a1 < & < b; = b. So, there is ag € A such that & € J,,.
Since J,, is open, there is & > 0 such that ({ —e,£ +¢) C J,,. On the other hand, there is
N € N such that ay and by in (§ — &,§ + €) because lim, a,, = lim, b, = £&. Thus we have
In = [an,bn] C (£ — &, + &) C Jy,. It contradicts to the Property (c¢) above. The proof is
finished.

Od

Remark 2.2 The assumption of the closeness and boundedness of an interval in Heine-Borel
Theorem is essential.

For example, notice that {.J, := (1/n,1) : n = 1,2...} is an open interval covers of (0,1) but
you cannot find finitely many .J,,’s to cover the open interval (0,1).

The following is a very important feature of a compact set.

Theorem 2.3 Let A be a subset of R. Then the following statements are equivalent.

(i) For any open intervals cover {Jo}taen of A, we can find finitely many Jo,, .., Jay Such
that A C Jo, U--- U Jqyy .

(ii) A is compact.
(iii) A is closed and bounded.



Proof: The result will be shown by the following path

For (i) = (ii), assume that the condition (i) holds but A is not compact. Then there is a
sequence (z,) in A such that (z,) has no subsequent which has the limit in A. Put X =
{zn :n=1,2,..}. Then X is infinite. Also, for each element a € A, there is d, > 0 such that
Jo = (a—0q4,a+0,)NX is finite. Indeed, if there is an element a € A such that (a—d,a+J)NA
is infinite for all § > 0, then (x,,) has a convergent subsequence with the limit a. On the other
hand, we have A C |J,c 4 Ja- Then by the compactness of A, we can find finitely many a1, ..., ay
such that A C J,, U---UJy,. So we have X C J,, U---UJ,,. Then by the choice of J,’s, X
must be finite. This leads to a contradiction. Therefore, A must be compact.

The implication (ii) = (i7i) follows from Theorem 1.7 at once.

It remains to show (i4i) = (7). Suppose that A is closed and bounded. Then we can find a closed
and bounded interval [a, b] such that A C [a,b]. Now let {J,}aca be an open intervals cover of
A. Notice that for each element x € [a,b] \ A, there is 6, > 0 such that (x —dz, 2 +0,) NA =10
since A is closed by using Proposition 1.6. If we put I, = (x — 0,z + ;) for x € [a,b]\ A, then

we have
o JJau |J L
aEA z€a,b]\A

Using the Heine-Borel Theorem 2.1, we can find finitely many J,’s and I,’s, say Ja,, ..., Jay
and I, ..., Iy, , such that A C [a,b] C Jo, U---UJgy Uy U--- U, . Note that [, N A =1
for each = € [a,b] \ A by the choice of I;. Therefore, we have A C J,, U---UJ,, and hence A
is compact.

The proof is finished. O

Remark 2.4 In fact, the condition in Theorem 2.3(i) is the usual definition of a compact set
for a general topological space. More precise, if a set A satisfies the Definition 1.4, then A is
said to be sequentially compact. Theorem 2.3 tells us that the notation of the compactness and
the sequentially compactness are the same as in the case of a subset of R. However, these two
notation are different for a general topological space.

Strongly recommended: take the courses: MATH 3060; MATH3070 for the next step.
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